
Caio Barbosa Vieira da Silva

Exploring the Social Aspects of Design Decay

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Alessandro Fabricio Garcia

Rio de Janeiro
April 2021

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Caio Barbosa Vieira da Silva

Exploring the Social Aspects of Design Decay

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee.

Prof. Alessandro Fabricio Garcia
Advisor

Departamento de Informática – PUC-Rio

Prof. Alberto Barbosa Raposo
Departamento de Informática – PUC-Rio

Prof. Marcos Kalinowski
Departamento de Informática – PUC-Rio

Rio de Janeiro, April 8th, 2021

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

All rights reserved.

Caio Barbosa Vieira da Silva
I am an MSc student in Computer Science at Pontifical Catho-
lic University of Rio de Janeiro (PUC-Rio, Brazil), and an
Android developer as hobby. I have a bachelor’s degree in
Computer Science from the Federal University of Alagoas
(UFAL). During my graduation, I was always part of research
projects. I participated on collaborations with relevant Euro-
pean Universities, such as University of Coimbra, University
of Florence, which I visited for three months as part of the
collaboration, and University of College London. My current
research is focuses on understanding if social aspects that sur-
round the collaborative code development have a relation with
design decay. As result of my research, I submitted and got
accepted papers in relevant international vehicles, such as The
International Conference on Software Maintenance and Evolu-
tion (ICSME), International Conference on Software Analysis,
Evolution and Reengineering (SANER), and The Internatio-
nal Conference on Mining Software Repositories (MSR).

Bibliographic data
Barbosa Vieira da Silva, Caio

Exploring the Social Aspects of Design Decay / Caio
Barbosa Vieira da Silva; advisor: Alessandro Fabricio Garcia. –
Rio de janeiro: PUC-Rio, Departamento de Informática, 2021.

v., 89 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Social Aspects – Teses. 2. Design Decay – Teses. 3.
Data Mining – Teses. 4. Aspectos Sociais;. 5. Decaimento
de Design;. 6. Mineração de Dados. I. Garcia, Alessandro
Fabricio. II. Pontifícia Universidade Católica do Rio de Janeiro.
Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Acknowledgments

First, I would like to thank my family, without their support, I probably would
not be here. Second, I would like to thank my girlfriend, that is my best friend
and supporter. Third, I would like to thank my research colleagues, that helped
me very much in times of need. To my graduation advisor, Prof. Dr. Baldoino
Fonseca, that teached me the way into the research world. Finally, but not less
important, I would like to thank my advisor, Prof. Dr. Alessandro Garcia, for
his trust in my work, advices, lessons and for giving me the opportunity of
being his student. I am also grateful to Capes, CNPq, FAPERJ and PUC-Rio
for the financial support that made my research possible in the first place.
Finally, my sincere thanks to the administrative staff of the DI at PUC-Rio.
This study was financed in part by the Coordenação de Aperfeiçoaento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Abstract

Barbosa Vieira da Silva, Caio; Garcia, Alessandro Fabricio. Ex-
ploring the Social Aspects of Design Decay. Rio de Janeiro,
2021. 89p. Dissertação de mestrado – Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.

Code development has been performing collaboratively for a long time. Plat-
forms, such as GitHub, contribute to this process with various mechanisms.
Pull Request is a mechanism that allows developers to submit their contri-
butions to a project. Then, these changes can be discussed, analyzed, and
reviewed before being integrated into the repository. One of the goals of this
process is to avoid a phenomenon called design decay. It occurs when poor
design structures are introduced in a project. As a result, the project may
become difficult to maintain and evolve. Existing techniques use source code
symptoms (e.g., code smells) to identify the manifestation of design decay.
Nevertheless, such symptoms can only be used to identify design decay that
is already present in the project. Thus, in this dissertation, we investigated
the exploration of three social aspects to predict the manifestation of design
decay on open-source projects as follows. Communication Dynamics repre-
sents information about contributor’s roles and temporal aspects of their
discussions. Discussion Content is the information being exchanged among
participants of a contribution. Finally, Organizational Dynamics represents
characteristics of the team organization. The manifestation of these social
aspects along software development can induce behaviors that possibly af-
fect the design quality. However, no previous study has investigated the
influence of such social aspects on the manifestation of design decay. Thus,
we aim to shed light on how these three aspects influence the design decay.
To achieve this goal, we introduced a suite of metrics for characterizing so-
cial aspects in pull-based software development. Then, we analyzed seven
open-source projects, mining both their commits and pull requests. Our re-
sults reveal that: (i) many social metrics, e.g., Discussion Length, can be
used to discriminate between pull requests that impact on the manifesta-
tion of design decay from the ones that do not impact; (ii) various factors
of communication dynamics, such as Number of Users, are related to design
decay. Nevertheless, temporal factors of communication dynamics outper-
form the participant roles as indicators of design decay; and (iii) aspects
related to organizational dynamics, such as the number of newcomers, are
surprisingly not associated with design decay manifestation.
Keywords

Social Aspects; Design Decay; Data Mining

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Resumo

Barbosa Vieira da Silva, Caio; Garcia, Alessandro Fabricio. Explo-
rando os Aspectos Sociais do Decaimento de Design. Rio
de Janeiro, 2021. 89p. Dissertação de Mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

O desenvolvimento de código vem sendo executado de forma colaborativa há
muito tempo. Plataformas, como o GitHub, contribuem para esse processo
com vários mecanismos. Pull Request é um deles, e permite aos desenvolve-
dores enviarem suas contribuições para um repositório, onde essas mudanças
podem ser discutidas e revisadas antes de serem integradas ao código princi-
pal. Um dos objetivos desse processo é evitar um fenômeno chamado design
decay, que ocorre quando estruturas de pobres de design são introduzidas
no código fonte. Como resultado, o projeto pode se tornar difícil de manter
e evoluir. As técnicas existentes usam sintomas de código fonte (e.g., mal
cheiros de código) para identificar a manifestação de design decay. No en-
tanto, esses sintomas só podem identificar design decay que já se ocorreu.
Assim, nesta dissertação, investigamos três aspectos sociais para prever a
manifestação de design decay em projetos de código aberto. Dinâmica de
comunicação representa informações sobre os papéis dos contribuidores e
aspectos temporais das discussões. Conteúdo da discussão é a informação
sendo trocada entre participantes de uma contribuição. Finalmente, dinâ-
mica organizacional representa as características da equipe. A manifestação
desses aspectos sociais ao longo do desenvolvimento de software pode indu-
zir comportamentos que possivelmente afetam a qualidade do código. No
entanto, nenhum estudo anterior investigou a sua influência no design de-
cay. Assim, buscamos evidências sobre como esses três aspectos influenciam
na manifestação de design decay. Para atingir esse objetivo, nós introduzi-
mos um conjunto de métricas para caracterizar aspectos sociais num modelo
de desenvolvimento baseado em pull requests. Então, nós analisamos sete
projetos, extraindo seus commits e pull requests. Nossos resultados revelam
que: (i) métricas sociais podem ser usadas para discriminar as pull requests
que impactam na manifestação de design decay daquelas que não impactam;
(ii) vários fatores da dinâmica da comunicação estão relacionados ao design
decay. No entanto, os fatores temporais superam os fatores dos papéis dos
participantes como indicadores de design decay; e (iii) aspectos relacionados
à dinâmica organizacional, como o número de novatos, surpreendentemente,
não estão associados a manifestação de design decay.
Palavras-chave

Aspectos Sociais; Decaimento de Design; Mineração de Dados

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Table of contents

1 Introduction 12
1.1 Problem Statement and Limitations of Related Work 14
1.2 Main Research Contributions 16
1.3 Dissertation Outline 17

2 Background and Related Work 19
2.1 Pull Request-Based Development Model 19
2.2 Design Decay and Its Symptoms 20
2.3 Social Aspects 22
2.3.1 Communication Dynamics 24
2.3.1.1 Participation Roles 25
2.3.1.2 Size 26
2.3.1.3 Time 26
2.3.2 Discussion Content 27
2.3.2.1 Content Size 27
2.3.2.2 Keyword Related 28
2.3.3 Organizational Dynamics 28
2.4 Summary 29

3 Revealing the Social Aspects of Design Decay 30
3.1 Introduction 31
3.2 Background and Related Work 32
3.2.1 Pull Request Discussion and Social Aspects 32
3.2.2 Design Decay and its Symptoms 33
3.2.3 Related Work 34
3.3 Motivating Example 35
3.4 Study Settings 37
3.4.1 Goal and Research Questions 37
3.4.2 Study Steps and Procedures 38
3.5 Results and Discussion 43
3.5.1 Social Metrics and Impactful Pull Requests 43
3.5.2 Communication Dynamics and Decay 44
3.5.3 Discussion Content and Decay 47
3.6 Threats to Validity 50
3.7 Conclusion and Future Work 51
3.8 Summary 52

4 On the Relationship between Social Aspects and Design Decay 53
4.1 Introduction 54
4.2 Background and Related Work 56
4.3 Study Design 57
4.3.1 Goal and Research Questions 57
4.3.2 Study Steps and Procedures 59
4.4 Results and Discussion 63

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

4.4.1 Social Metrics and Impactful Pull Requests 65
4.4.2 Communication Dynamics and Decay 66
4.4.3 Discussion Content and Decay 68
4.4.4 Organizational Dynamics and Decay 70
4.4.5 All Metrics and Aspects 72
4.5 Threats to Validity 73
4.6 Conclusion and Future Work 74
4.7 Summary 75

5 Final Conclusions 77
5.1 Implications and Future Work 78

Bibliography 80

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

List of figures

Figure 2.1 In line comments on pull request 20
Figure 2.2 Conversation on pull request 21

Figure 3.1 Discussion in pull request #8153 from Elasticsearch project 35

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

List of tables

Table 1.1 Publications and Submissions 17

Table 2.1 Design decay symptoms investigated in this study [61] 22

Table 3.1 Software systems investigated in this study 38
Table 3.2 Degradation symptoms investigated in this study 39
Table 3.3 Control and independent variables used in our study. 41
Table 3.4 Results of the wilcoxon rank sum test grouped by social

metrics, design decay symptom and software system 43
Table 3.5 Results of the odds ratio analysis for the communication

dynamics 44
Table 3.6 Results of the odds ratio analysis for the discussion content 47
Table 3.7 Results of the odds ratio analysis with both social aspects

together for all project data 50

Table 4.1 Software systems investigated in this study 59
Table 4.2 Degradation symptoms investigated in this study 60
Table 4.3 Control Variables 62
Table 4.4 Communication Dynamics Dimension 63
Table 4.5 Discussion Content Dimension 64
Table 4.6 Organizational Dynamics Dimension 64
Table 4.7 Statistical Significance (p-value) of the Wilcoxon Rank

Sum Test and the Cliff’s Delta (d) Magnitude Classification 66
Table 4.8 Results of the odds ratio analysis for the communication

dynamics 66
Table 4.9 Results of the odds ratio analysis for the discussion content 68
Table 4.10 Results of the odds ratio analysis for the organizational

dynamics 72
Table 4.11 Results of the odds ratio analysis with all social aspects

together for all project data 72

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

List of Abreviations

DL – Discussion Length
HL – High-Level
LL – Low-Level
MTBC – Mean Time between Comments
NWD – Number of Words in Discussion
NWPCD – Number of Words per Comment in Discussion
PR – Pull Request
RQ – Research Question

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

1
Introduction

Software development does not only consist of technical activities, but
also of social activities that emerge from the collaboration among develop-
ers [13, 21, 68]. These social activities consist of developers communicating
with each other by exchanging their knowledge while aiming at cooperatively
producing high-quality software. This is known as the pull-based development
model [13]. This model allows developers, who play different positions, to
submit Pull Requests. Each pull request explicitly describes which changes
were made in the source code. Therefore, the code changes can be reviewed,
commented, and discussed. For instance, in GitHub, developers can interact
through different venues of discussion [63]: (i) discussions on the pull request
itself, (ii) discussions on a specific line within the pull request, and (iii) discus-
sions on a specific commit within the pull request. Moreover, these discussions
may be related or not to the complexity and impact of the changes submitted.

With the predominance of the use of distributed version control systems,
such as git, several software projects start to adopt the pull-based software
development model, specially the open source ones [33]. However, the pull
request dynamics used to happen elsewhere via external tools (i.e., Bugzilla,
Gerrit). Given such increasingly popular dynamics, the code environments are
integrating and improving their tools so the developers can communicate better
and engage more in discussions.

Social aspects capture communication activities between developers and
their interpersonal relations [28]. Many of those social aspects, which are fos-
tered by such platforms widely, influence the quality of produced code. Thus,
social aspects are increasingly intrinsic to software development. They can no
longer be ignored by one understanding influential factors on software quality
and productivity. In fact, prior studies consistently report that discussions on
design structure are frequent in this development model [24, 54, 85]. Nonethe-
less, different social activities in pull-based development may contribute to
avoiding, reducing, or accelerating design decay.

Design decay is a phenomenon in which developers progressively intro-
duce code with poor design structures into a system [55]. It is caused by design
decisions that negatively impact quality attributes, such as maintainability and

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 1. Introduction 13

extensibility [35, 66, 38]. An example of design decay is when a class is over-
loaded with multiple unrelated functionalities, making it difficult to use and
increasing the chances of causing ripple change effects on other classes. In this
context, design decay can be measured through the quantification of source
code symptoms – also popular known as code smells. These symptoms are in-
dicators of structural design degradation in the scope of classes, methods, and
code blocks [61]. The decay in a certain program unit is characterized by the
number of smells as well as the number of different smells types [66, 48]. More-
over, the presence of decay indicates the existence of design problems [66, 83],
which may directly hinder one or more non-functional requirements, such as
performance and maintainability.

Different social aspects may capture communication activities between
developers and their interpersonal relations [28]. They are central to the charac-
terization of social software engineering, which is the application of processes,
methods, and tools to enable community-driven creation, management, deploy-
ment, and use of software in online environments [32]. Examples of key social
aspects are communication dynamics, discussion content, and organizational
dynamics [9, 81]. The communication dynamics determines how the commu-
nication flows among developers, who also play specific roles along the change
under development (e.g., number of core developers). The discussion content
determines characteristics of the contents of comments exchange among de-
velopers (e.g., number of snippets in discussion). Finally, the organizational
dynamics represent the aspects of the team as a whole (e.g., number of new-
comers or developers leaving the organization).

The aforementioned social aspects can be directly or indirectly related
to design quality for various reasons. First, the communication dynamics
can reveal the importance of the participant roles, as the temporal aspects
of the discussion, and their impact on design decay. Second, the discussion
content is key when we need to understand what is being discussed, and
if some type of content is able to increase or decrease the design decay.
Third, the organizational dynamics reveals the importance of team size and
gender diversity when investigating design decay on collaborative software
organizations. Thus, the manifestation of these social aspects along software
development can induce behaviors that possibly affect the design quality of
the code under development.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 1. Introduction 14

1.1
Problem Statement and Limitations of Related Work

As aforementioned, developers communicate with each other during soft-
ware development in collaborative coding environments. They exchange knowl-
edge and ideas about the code being developed to keep or improve the software
quality. In the pull-based development model, a developer submits her/his
code for review. After the discussions, which are either directly or indirectly
related to the code, it may be merged to the main branch of the repository.
Such discussions involve multiple social aspects, i.e., discussion content, com-
munication dynamics, and organizational dynamics. Since these aspects are
intertwined with design and implementation decisions, they may dictate or
influence the future of the code being produced and the overall design of the
system. Unfortunately, the relationship between these key social aspects and
design decay has not been studied so far. Consequently, developers and soft-
ware organizations lack evidence to support or monitor certain social aspects
that could positively or negatively influence design decay. More specifically,
we do not know which social metrics can be used to discriminate between de-
sign impactful and unimpactful pull requests. Moreover, we know little about
the influence of social aspects on design decay. Thus, we formalize our general
research problem as follows.

General Problem. Developers and software organizations lack evidence
to support or monitor certain social aspects that could positively or
negatively influence the design decay.

In order to solve our general problem, we assessed the relationship
between social aspects and design decay through a multi-case study [6].
This first study provided evidence that many social metrics can be used
to discriminate between a design impactful and unimpactful pull request.
The sample analyzed in this study contained 5 projects and assessed two
social aspects dimensions: (i) communication dynamics, which represent the
dynamic of the discussion activity, such as the role of participants involved
in a discussion; and (ii) discussion content, which represents the interaction
of developers during the exchange of messages and obtained information
about the content of each message. Moreover, we noticed that different social
metrics tend to be indicators of design decay when analyzing both aspects
in separate or together. Nevertheless, this study mainly focused on basic
activities surrounding the pull request workflow, leaving behind a lot of social
information that could be explored. Examples include information on the

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 1. Introduction 15

organization surrounding the project and deeper analysis on the content of
comments.

Thus, in a subsequent study, we performed an in-depth empirical analysis
for better understanding: (i) the social aspects of discussion content already
approached by our first study [6]; (ii) new dimensions of social aspects; and
(iii) design symptoms decrease by validating with Self-Affirmed Refactorings.
In order to produce this in-depth analysis, we: (i) increased the number of
projects in the dataset; (ii) designed and implemented new social metrics
of discussion content and communication dynamics; (iii) introduced a new
dimension of social aspects, i.e., organizational dynamics; and (iv) applied
rigorous statistical analysis over the methods used in the first study. Similarly,
we computed the design decay symptoms using the open-source version of a
tool called DesigniteJava [60]. This tool is able to identify 27 decay symptoms:
17 design symptoms, and 10 implementation symptoms. Finally, in order
to confirm the cases where a decrease on the design symptoms occurred,
we applied the methodology of AlOmar et al. [2] to collect Self-Affirmed
Refactorings on the commit messages and comments.

The Distinction Between Impactful and Unimpactful Pull Requests using
Social Metrics. Previous studies [33, 54] tend to consider only product and
process metrics of code contributions performed via pull requests that affect
the quality of a software system. However, as aforementioned, different social
aspects (measured via social metrics) can also directly affect the software
quality. Unfortunately, little is known if there is a statistically significant
difference between social measures for impactful pull requests and unimpactful
ones. In this context, a pull request is impactful if there is a variation (increase
or decrease) on design decay symptoms when considering all commits (the
sum of their symptoms) of this pull request, i.e., the density of symptoms
has increased. Conversely, a pull request is unimpactful if the design decay
symptoms remained the same considering all commits of the pull request,
sum of their symptoms is equal to zero. A clear understanding of what social
metrics can be used to distinguish impactful and unimpactful pull requests
using social metrics can be beneficial to future research in many ways. For
instance, we discovered that the metric Mean Time Between Comments is able
to differentiate between these two types of pull requests. Then, future works
will know which metric they should use in algorithms or machine learning
models, without the need to test all metrics. In summary, we formalize our
first specific problem as follows.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 1. Introduction 16

Problem 1. There is a lack of empirical evidence on which social metrics
are able to distinguish between impactful and unimpactful pull requests.

Influence of Social Aspects on Design Decay: Empirical Evidence is
Quite Scarce. The relationship between social aspects and design decay
has not been studied so far. In fact, most of the previous studies focus
on investigating the relations of social aspects with code review [77, 76],
post-release defects [9, 26, 18], pull-request acceptance [10, 59] or software
vulnerabilities [42]. Despite this vast body of knowledge, as aforementioned,
the literature still lacks empirical evidence about the influence of different
social aspects on design decay. Hence, it is unclear if key social aspects,
such as communication dynamics, discussion contents, and organizational
dynamics have a positive or negative relationship with design decay. A clear
understanding about the influence of social aspects on design decay can reveal
if the combination of these multiple social aspects, or the use of each aspect
in isolation, results in a better indication of the design decay.

Problem 2. We know little about the influence of communication dynam-
ics, discussion content, and organizational dynamics on design decay.

1.2
Main Research Contributions

In order to address our research problems (Section 1.1), this Master’s
dissertation focused on performing two retrospective studies using data from
open-source software projects. We retrospectively analyzed data available in
the repository. Our studies aimed at improving the knowledge of the social
software development communities on how their behavior can be harmful to
the design of the code being developed. First, we investigated the interplay
between social aspects and design decay in an empirical study involving seven
projects. We analyzed the degree of relationship between each social aspect an
design decay. To perform this study we designed and implemented a set of social
metrics, which are our first contribution. Each social aspect is represented by
a specific suite of metrics.

Contribution 1: We have designed and implemented a comprehensive
suite of 22 metrics to enable us to observe the influence of social aspects
on design decay.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 1. Introduction 17

Then, we investigated how the social metrics performed with respect to
their relation to design decay symptoms in two studies. In our first analysis,
we verified if social metrics are able to differentiate design changes in pull
requests. Then, we created a statistical model in order to investigate to what
extent these metrics are related to design decay. Finally, our findings can be
used to improve developers behaviors in social coding communities.

Contribution 2: We reported a set of findings on how social metrics can
be used to indicate design decay.

Other Contributions. We also consider relevant three other contribu-
tions. First, a framework to collect social data from GitHub repositories. This
framework makes it easier the work of researchers, by presenting an interface
to the GitHub API v3. Moreover, this framework is also generic, which allows
the introduction of new endpoints easily. Finally, others can reuse, extend and
tailor this framework to their purposes. As the second contribution, we offer a
comprehensive dataset of social data mined from seven open-source projects.
Third, we also developed an R script to evaluate the metrics on two statisti-
cal models: Wilcoxon Rank Sum Test and a Multiple Logistic Regression. The
former is able to identify which metrics have a correlation with the variable(s)
being analyzed. The latter analyzes the influence of each metric in the pres-
ence of each other, i.e., analyzes if different metrics are representing the same
behavior as indicators of the outcome variable (design decay).

Publications. The contributions this Master’s dissertation are reported
in various publications that are listed in Table 1.1. At the time of this
dissertation, 5 papers have been either published or accepted.

Table 1.1: Publications and Submissions
Title Conference Status Type
Revealing the Social Aspects of Design Decay: A Retrospective Study
of Pull Requests

Brazilian Symposium
on Software Engineering 2020 Published Master’s Research

How Does Modern Code Review Impact Software Design Degradation?
An In-depth Empirical Study

International Conference on Software
Maintenance and Evolution 2020 Published Collaboration

Refactoring from 9 to 5? What and When Employees and Volunteers Contribute to OSS Symposium on Visual Languages
and Human-Centric Computing 2020 Published Master’s Research

On Relating Technical, Social Factors, and the Introduction of Bugs International Conference on Software
Analysis, Evolution and Reengineering 2020 Published Master’s Research

Predicting Design Impactful Changes in Modern Code Review Mining Software
Repositories 2021 Accepted Collaboration

1.3
Dissertation Outline

The remainder of this dissertation, which is mainly structured as a
compilation of two of our technical papers (one published and one to be
submitted), is organized as follows.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 1. Introduction 18

Chapter 2 presents the background, which introduces: (i) pull request-
based development model; (ii) design decay symptoms; and (iii) the social
metrics either used or defined in this dissertation. Moreover, we also discuss
the related work.

In Chapter 3, we present our first study, which is an investigation
of the relations between social aspects and design decay symptoms. In this
study, we first assess if the social metrics are able to be used to discriminate
between impactful and unimpactful pull requests. Moreover, we evaluate if the
social aspects are related to design decay symptoms. This study consists of
the paper “Revealing the Social Aspects of Design Decay: A Retrospective
Study of Pull Requests”, which was accepted on the Brazilian Symposium on
Software Engineering (SBES) in 2020.

Chapter 4 presents our second study, that replicates the first study
by doing an in-depth analysis. Similar to the study in Chapter 3, in this
study we apply the same methodology, however, we aim to mitigate three main
limitations: (i) number of projects; (ii) high-level approach on the discussion
content aspect metrics; (iii) number of social aspects. This study consists of
the paper “Social Aspects of Design Decay: A Replication Study”, which is
going to be submitted in a future conference. Finally, Chapter 5 summarizes
the conclusions of our work, presenting the main contributions, implications,
as well the future work.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

2
Background and Related Work

This chapter contains the background and related work of this disserta-
tion. Section 2.1 clarifies the pull request-based development model; Section 2.2
discusses design decay and its symptoms. We focus on presenting symptoms
that will be considered in the context of this dissertation. Section 2.3 presents
the social aspects that will be addressed in this work; Finally, Section 2.4
concludes this chapter.

2.1
Pull Request-Based Development Model

The GitHub has many features related to source code on its environment,
one of the more known ones are the Pull Requests:

Pull requests let you tell others about changes you’ve pushed to a
branch in a repository on GitHub.1

The pull request mechanism starts when a developer submits his code
change to a repository. On the submission, they should describe their changes,
e.g., new features, bug fixes, improvements. Later on, the changes are examined
by code reviewers of the repository. Finally, the code can be merged in a branch
of the repository, closed (not accepted) or abandoned (no answer for a long
time).

During the pull request opening to the pull request merging (or closing,
if rejected), a developer can discuss their changes with more experienced
members of the community in two ways: (i) in line comments (or review
comments), this comment happen at the level of a file, as the code reviewers,
which usually are experienced members of the repository, make their comments
in line, attached to the code snippet that was reviewed and changed; (ii)
conversation comments (or discussion comments), this type of comment
is not related to a commit individually, nor an individual file, but to a
conversation surrounding the whole life cycle of a pull request. We can see an
example of (i) on Figure 2.1, where the user octocat makes an in line comment

1https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/about-
pull-requests

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 2. Background and Related Work 20

"Could we use the template from the styleguide here for consistency?" inside a
pull request, specifically to the line 1 of the file templates/issue_template.md.
These types of comments are used for code review. Moreover, on Figure 2.2 we
can see an example of (ii), where two users, tonychacon and schacon, are
discussing a change about the time delay of a LED, in this discussion, they
do not talk about code, but the main idea behind the change tonychacon
is going to make. On the remainder of this work we will only address the
(ii) discussions, the pull requests conversations, as we want to explore the
comments that are explicitly related to their collaborative work of the software
team. In line comments are often not produced as part of the discussion of two
or more developers. Instead, they are very specific comments to document very
local changes.

Figure 2.1: In line comments on pull request

2.2
Design Decay and Its Symptoms

The design of a software results from a set of decisions made by the
developers along time [71, 72]. However, this design can decay due the
introduction of poor code structures, which are named decay symptoms [20, 66,
77], an example of design decay symptom is the long method smell [61]. Code
smell is a characteristic of the code that gives insights about deeper problems.
Moreover, design decay is caused by the increase on the values of the density
or diversity of the design decay symptoms. We calculate the density of design
decay symptoms by counting the number of single code smells found in an
instance of source code. Conversely, diversity is the number of different types
of smells that can be found in an instance of source code.

Several studies [1, 36, 65, 66, 48, 17] analyzed the design decay in
different levels of granularity. For instance, Oizumi et al. [48] investigated if

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 2. Background and Related Work 21

Figure 2.2: Conversation on pull request

the symptoms appear in refactored classes with higher diversity and density.
They concluded that even in refactoring classes, design level symptoms could
indicate design problems. Furthermore, Ahmed et al. [1] observed that projects
get worse over time in terms of design problems, with the density characteristic
as the best indicator. However, in this study, we analyze a wide variety of
degradation symptoms when compared to similar studies. We found these
works relevant to our study due their findings about design decay symptoms
and characteristics of design problems.

In this work, we take into account two categories of design decay
symptoms: low-level structural smells (LL) and high-level structural smells
(LL) [61]. These two categories were selected since they are able to identify
smells of multiple granularities and able to easily validated, for future work.
Table 2.1 lists the 27 symptoms types investigated in our study, where the

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 2. Background and Related Work 22

HL smells and LL smells are presented in the upper and bottom halves
of the table, respectively. LL smells are indicators of fine-grained structural
decay; their scope is generally limited to methods and code blocks [61].
For instance, the long parameter list, empty catch block and long method
smells are examples of low-level. HL smells are symptoms that may indicate
structural decay impacting on object-oriented principles such as abstraction,
encapsulation, modularity, and specialization [37, 61]. An example of HL smells
that maybe used for finding design decay is insufficient modularization and
unitilized abstraction [61]. This symptom occurs in classes that are large and
complex, possibly due to the accumulation of responsibilities. Symptoms of
such categories can be automatically detected using a state-of-the-practice
tool called DesigniteJava [60].

Table 2.1: Design decay symptoms investigated in this study [61]
Symptom Types and Description
Imperative Abstraction: when an operation is turned into a class
Multifaceted Abstraction: an abstraction that has more than one responsibility assigned to it
Unutilized Abstraction: an abstraction that is left unused
Unnecessary Abstraction: an abstraction that is actually not needed in the system
Deficient Encapsulation: the accessibility of one or more members of an abstraction is more
permissive than actually required
Unexploited Encapsulation: when a client class that uses explicit type checks instead of exploiting
the variation in types already encapsulated within a hierarchy
Broken Modularization: when data and/or methods that should have been into a single abstraction
are spread across multiple abstractions
Insufficient Modularization: when an abstraction that has not been completely decomposed
Hub Like Modularization: when an abstraction has dependencies (both incoming and outgoing) with
a large number of other abstractions.
Cyclic Dependent Modularization: when two or more abstractions depend on each other directly or
indirectly
Rebellious Hierarchy: when a subtype that rejects the methods provided by its supertype(s)
Wide Hierarchy: when an inheritance hierarchy that is too wide
Deep Hierarchy: when an inheritance hierarchy that is excessively deep
Multipath Hierarchy: when a subtype inherits both directly as well as indirectly from a supertype
leading to unnecessary inheritance paths in the hierarchy.
Cyclic Hierarchy: when a supertype in a hierarchy that depends on any of its subtypes
Missing Hierarchy: when a design segment uses conditional logic instead of polymorphism.
Broken Hierarchy: a supertype and its subtype conceptually do not share an “is a“ relationship

Abstract Function Call From Constructor: a constructor that calls an abstract method
Complex Conditional: a conditional statement that is complex
Complex Method: a method that has high cyclomatic complexity
Empty Catch Block: a catch block of an exception that is empty
Long Identifier: an identifier that is excessively long
Long Method: a method that is too long to understand
Long Parameter List: a method that accepts a long list of parameters
Long Statement: a statement that is excessively long
Magic Number: when an unexplained number is used in an expression
Missing Default: a switch statement that does not contain a default case

2.3
Social Aspects

According to Ibrahim et al. [28], social aspects aim at capturing inter-
personal relations and communication activities between developers. Thus, in
this dissertation, we define social aspects as dimensions that characterize so-

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 2. Background and Related Work 23

cial properties related to software engineering activities. Previous studies have
investigated social aspects in different software engineering activities. Below
we discuss the ones that are closely related to this work.

Influence of social aspects during code review. Code review is
a software engineering activity directly related to the pull-based development
model. Recent studies have investigated the code review activity from different
perspectives [42, 59, 41, 77]. Uchôa et al. [77], for example, observed that
discussions about design may not be enough to avoid design decay and that
certain social-related factors, such as long discussions, are responsible for
increasing design decay symptoms. Ruangwan et. al. [59] investigated how
many reviewers did not respond to a review invitation. The authors found
that the more reviewers were invited to a patch, the more likely it was to
receive a response. Meneely et. al. [42] conducted an empirical investigation to
understand if the Linus’ law applies to security vulnerabilities in the context
of code reviews. They concluded that code files reviewed by more reviewers
are more likely to be vulnerable.

Social aspects on open-source environments. There are also stud-
ies that investigate social aspects in the context of open-source environ-
ments [84, 74, 79, 8]. Tsay et. al. [74], for instance, found that the social
connection between submitters and core members has a strong positive associ-
ation with pull-requests acceptance. Yu et. al. [84] identified patterns of social
connections among developers by mining the follow-networks. They also found
that the investigated repositories provide transparent work environments for
developers, promoting innovation, knowledge sharing, and community build-
ing.

Relation of social aspects with quality. Regarding the relation of
social aspects with software quality, we found some studies that investigate
how social aspects are related with defects [9, 11, 18]. Falcão et al. [18] inves-
tigated the relationship between social, technical factors, and the introduction
of defects. The authors identified that both social and technical factors can
discriminate between buggy and clean commits, such as ownership level of
developers’ commit, and social influence. Bettenburg and Hassan [9] investi-
gated the impact of social interaction measures on post-release defects. They
observed that social information can not be used as a substitute to traditional
product and process metrics used in defect prediction models. Finally, Bird
et al. [11] examined the relation between ownership and failures in two large
industrial software projects. Their results show that the number of developers
has a strong positive correlation with failures.

As presented above, to the extent of our knowledge, no previous study

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 2. Background and Related Work 24

investigated whether social aspects can be used in pull-based development for
predicting the manifestation of design decay. In fact, pull requests conversa-
tions may contain different social aspects that capture communication dynam-
ics, content and the impact of interpersonal relations [81]. Moreover, these
social aspects can be categorized on many social dimensions [81, 9]. Wiese
et al. [81] did a mapping study, compiling all studies that investigated social
metrics in software engineering. Based on this study, we selected and grouped
metrics into three social aspects, namely communication dynamics, discussion
content, and organizational dynamics. The selected metrics can be collected in
the context of pull requests to assess the relation of social aspects with design
decay symptoms.

We consider that our selected aspects are representative because they are
able to capture information about organizations, developers, and their com-
munications. Communication Dynamics represents the role of participants
involved in a discussion or temporal aspects of the messages. For instance,
a discussion that involves developers with different roles (e.g., core develop-
ers, organization members, contributors, or newcomers).Discussion Content
represents the interaction of developers during the exchange of messages and
the content of each message. Examples of discussion content elements include
the presence of code snippets along the interaction, and the number of words
per comment. Finally, Organizational Dynamics represents the aspects of
the team as a whole. For example, number of newcomers or developers entering
or leaving the organization. In the next subsections we present more details
about the social aspect and their corresponding metrics.

2.3.1
Communication Dynamics

In this section we present the communication dynamics dimensions,
namely participation roles, size, and time. For each dimension, we present their
set of metrics, that are related to the communication between participants
of pull requests. Moreover, we are able to measure the characteristics of
contributors, the time spawn of the discussions and their size. Next, we present
details about each metric, which is grouped with other metrics of the same
dimension, as follows.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 2. Background and Related Work 25

2.3.1.1
Participation Roles

On the GitHub API 2, there are different types of association
tags that an user can have: (i) NONE; (ii) FIRST_TIMER; (iii)
FIRST_TIME_CONTRIBUTOR; (iv) CONTRIBUTOR; (v) COLLAB-
ORATOR; (vi) MEMBER; and (vii) OWNER. Based on those tags, we
defined three different categories of developers, namely: users; contributors;
and core developers, to compose the participation roles dimension. We define
them as follows.

Number of Users measures the number of unique users that somehow
interacted in a discussion along a pull request, which either opened, com-
mented, merged, or closed. This role represents the common users, labeled (i)
NONE, (ii) FIRST_TIMER, and (iii) FIRST_TIME_CONTRIBUTOR. We
believe that these three tags allow us to identify pull requests discussions with
the presence of users without expertise or with just a quite limited experience
on the source code. Our expectation for this metric is that the number of users
participating in a discussion may influence the design quality. A higher num-
ber of users may help to improve design quality or it may contribute to the
incidence of design decay.

Number of Contributors measures the number of contributors that
interacted in some form in the pull request (opened, commented, merged or
closed). This role is represented by the developers with the tag association
(iv) CONTRIBUTOR and (v) COLLABORATOR. These tags represent de-
velopers that commited more than once on the repository or have commit
permission in the repository, respectively. The rationale behind this metric is
that a higher number of contributors may help to reduce design decay.

Number of Core Developers measures the number of core developers
that interacted in some form and with any other kind of user in a pull
request (opened, commented, merged or closed). This role is represented by
the developers with the tag association (vi) MEMBER and (vii) OWNER.
These tags represent the developers that are part of the project organization
or are owners of the repository. This metric allows us to identify pull request
discussions with the presence of these core developers. Similarly to the previous
metric, we expect that a higher number of core developers involved in the
discussion of a pull request may result in higher design quality. The rationale
is that core developers are very often aware of the design decisions made so
far in the project. Thus, the resulting source code change would likely have a
better design quality.

2https://docs.github.com/en/rest

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 2. Background and Related Work 26

Pull Request Opened By measures the type of user that has opened
each pull request or issue associated with the pull request. The user might
be an Employee or Temporary one. Employees are active contributors and
core developers. Conversely, temporary users are contributors that do not
actively work on the project or does not work for the software organization
that maintains the open source project. We believe that issues or pull requests
opened by temporaries have more risk of degrading the code. Conversely, issues
or pull requests opened by employees are expected to result in a better design
quality.

2.3.1.2
Size

Number of Comments quantifies the number of comments that were
made within a pull request. The rationale is that discussions with a higher
number of comments around a code change would find possible design prob-
lems. As a result, the design quality is expected to be improved or, at least,
maintained.

2.3.1.3
Time

Mean Time Between Comments represents the sum of the time
between all comments of a pull request weighted by the number of comments.
A higher time between comments (e.g., a long pause in an otherwise fast-paced
discussion) may be related to design decay.

Discussion Duration, which is also called Discussion Length, measures
the time in days that a pull request lasted. That is, Discussion Duration
represents the number of days elapsed between the creation and merging (or
closing, if not merged) of a pull request. We believe that the longer is the
discussion, the higher will be the chance of problems being explained and
solved. Thus, a longer discussion is likely to help to avoid design decay.

Time Between Creation and First Comment measures the time in
days between the pull request creation and the first comment on that pull
request. We conjecture that the longer the time between the pull request
opening and the first comment, the higher the chance of the developer not
really engage on solving possible problems, leading to design decay.

Time Between Last Comment and Merge measures the time in
days between the last comment on the pull request and the pull request merge
(or close, if not merged). In this case, we also believe that the longer the time
between the last comment and the closing of the pull request, the higher the

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 2. Background and Related Work 27

chance of the author not engaging on new minor changes. As a result, such a
pull request would have more chance of introducing design degradation.

2.3.2
Discussion Content

In this section, we present the metrics related to the discussion content
aspect. With this social aspect, we expect to measure characteristics related to
the content of discussions. This aspect comprehends two dimensions: content
size and keyword related. Next, we describe each metric that composes the
discussion content aspect.

2.3.2.1
Content Size

Number of Snippets in Discussion measures the number of snippets
within each comment of a pull request. Those snippets are detected by the
number of ‘‘‘ (three backticks, which is the syntax that opens a snippet in
markdown) divided by two (opening and closing). The higher the number
of snippets in a discussion, the clearer the users are trying to explain their
thoughts and intents. Therefore, avoiding confusion and possibly reducing
design decay.

Snippet Size represents the sum of the size of all snippets found on
comments in a pull request. The bigger the size of snippets in a discussion, the
clearer the users are trying to pass a message to other developers. Therefore, by
avoiding misunderstanding, we believe that design decay may also be avoided.

Mean Snippet Size measures the snippet size weighted by the total
number of snippets. The higher the mean of snippets in a discussion, the clearer
the users are sharing their decisions. Thus, we expect that this would help to
avoid confusion and design decay.

Number of Words in Discussion measures the sum of words in
all comments of a pull request. For calculating this metric, we applied a
preprocessing in the text of comments for removing contractions, stop words,
punctuation, and replacing numbers. Discussions with a high number of words
are related to more complex changes. Thus, we believe that such changes may
be more susceptible to design decay.

Number of Words per Comment in Discussion represents the sum
of words in all comments weighted by the number of comments in a pull request.
In this case, we also applied the preprocessing for removing contractions,
stop words, punctuation, and for replacing numbers. Similarly to the previous

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 2. Background and Related Work 28

metric, we also expect that discussions with a high weighted number of words
are related to more complex changes, which may induce design decay.

2.3.2.2
Keyword Related

Number of Design Keywords represents the number of times a
design-related keyword is found in the title or comments of a pull request.
Changes with design keywords may show that developers were concerned about
design, which may indicate that they tried to avoid design decay. The keywords
used in this analysis are: design, architect, dependenc, requir, interface, servic,
artifact, document, behavior, and modul.

Number of Refactoring Keywords measures the number of
refactoring-related keywords, which identifies the pull requests that a refac-
toring keyword in their title or comments. Changes with refactoring keywords
may show that developers were concerned about improving the source code
design. Therefore, this metric may be associated with a better design quality.
The keywords used in this analysis are: refactor, mov, split, fix, introduc,
decompos, reorganiz, extract, merg, renam, chang, restructur, reformat, extend,
remov, replac, rewrit, simplif, creat, improv, add, modif, enhanc, rework, inlin,
redesign, cleanup, reduc, and encapsulat.

Density of Design Comments measures the mean of the number of
design keywords per comments. Our rationale with this metric is that, the
higher the mean of design related comments, the higher is the concern with
design quality. Thus, as a result, we expect the chances of design decay to be
reduced.

Density of Refactoring Comments represents the measurement of
the mean number of refactoring keywords occurrences per comment. As in the
previous metric, the higher the mean of refactoring comments, the smaller the
chances of design decay.

2.3.3
Organizational Dynamics

In this last aspect, we group the metrics related to the characteristics
and aspects of the organization. Such characteristics and aspects include
information about the diversity, size increase, and reduction of contributors
involved in the project. Below we present details about each metric of this
dimension.

Team Size measures the number of active developers in the past 90
days. A higher amount of active developers may result in more engagement

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 2. Background and Related Work 29

for the (design) discussions of each pull request. Moreover, the workload of the
current developers in the team is reduced. Thus, we expect that the higher the
team size, the smaller will be the incidence of design decay. For this metric, we
collected all developers that interacted on issues or pull requests in a period
of 90 days. However, this developer should have committed at least one time
in the repository.

Gender Diversity represents the proportion of male/female contribu-
tors on the project’s team. We believe that, the higher the gender diversity on
a team, the better will be the team performance. Thus, with a better perfor-
mance, we believe that design decay would be avoided. We used the framework
proposed by Vasilescu et al. [78] to find the gender of the users, based on their
name and location.

Number of Newcomers measures the number of new contributors on
the past 90 days. A higher amount of newcomers means that many contributors
are not experienced in the project. Therefore, we believe that, the pull requests
involving newcomers are more likely to result in design decay. For this metric,
we collected all developers that interacted on issues and pull requests in a
period of 90 days, but not before this period. However, this developer should
have committed at least one time in the repository.

Number of Developers Leaving measures the number of developers
that previously contributed to the project but did not contributed on the past
90 days. We conjecture that more developers leaving a project can decrease
the engagement of the community, resulting in design decay. For this metric,
we collected all developers that interacted on issues or pull requests before a
period of 90 days, but do not interacted in the last 90 days. However, this
developer should have committed at least one time in the repository.

2.4
Summary

This chapter provided the background to support the understanding
of this dissertation. We presented basic concepts, used throughout the next
dissertation chapters. We also discussed related work reporting studies on
social aspects and design decay. The next two chapters present the empirical
studies that we conducted for addressing the problems listed on Section 1.1. For
this purpose, we analyzed the impact of social aspects on the design decay, to
understand their influence and their place as indicators of increase or decrease
of design decay symptoms. The implementation of all metrics described in this
chapter can be obtained in our replication package [7].

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

3
Revealing the Social Aspects of Design Decay

One of the main goals of the pull-based development model is to improve
the changes under development. Among the objectives of the pull-based model,
there is the reduction of design decay occurrence. In this context, two central
social aspects may contribute to combating or adversely amplifying design
decay. First, design decay may be avoided, reduced or accelerated depending
whether the communication dynamics among developers – who play specific
roles – is fluent and consistent along a change. Second, the discussion content
itself may be decisive to either improve or deteriorate the structural design
of a system. Finally, since we are preliminary assessing the social aspects, the
organizational dynamics aspect, that contains metrics that are not directly
related to a single pull request, we will only be address it on the study 2 (see
Chapter 4).

As we discussed in Chapter 2, there is no previous study about the part
played by social aspects on either avoiding or amplifying design decay. Previous
studies only investigates technical aspects of design decay or confirms the high
frequency of design discussions in pull-based software development. Thus, in
this chapter we present the paper “Revealing the Social Aspects of Design Decay
A Retrospective Study of Pull Requests” [6], which was published and presented
at the XXXIV Brazilian Symposium on Software Engineering (SBES).

This paper reports a retrospective study aimed at understanding the
role of communication dynamics and discussion content on design decay. We
focused our analysis on 11 social metrics (see Chapter 2, Section 2.3) related
to these two aspects as well as 4 control technical metrics typically used as
indicators of design decay (see Chapter 2, Section 2.2. We analyzed more than
11k pull request discussions mined from five large open source software systems.

Our findings reveal that many social metrics can be used to discrim-
inate between design impactful and unimpactful pull requests. This finding
motivates us to further investigate the social aspects in this matter. Second,
many dimensions of communication dynamics are particularly related to design
decay. However, the temporal dimension of communication dynamics outper-
formed the participant roles’ dimension as indicators of design decay. Finally,
we noticed certain social metrics tend to be indicators of design decay when

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 31

analyzing both aspects are considered together. Such results contribute for
addressing research problems 1 and 2 (see Section 1.1) of this dissertation.

3.1
Introduction

Open-source environments, such as GitHub, promote social coding activ-
ities. These social activities consist of developers continually communicating
and sharing their knowledge along a code change until it is submitted as a
pull request [22, 23]. This is known as the pull-based development model [13].
This model allows developers, who play different roles, to submit, review, com-
ment and discuss code contributions to a software project [63]. The pull-based
development model is widely used by open-source communities.

One of the goals of pull-based development model is to encourage
the improvement of the change under development, including its beneficial
impact on the design structure. In fact, recent studies consistently report
discussions about design structure are frequent in this development model [12,
85, 49]. However, social activities in pull-based development may contribute to
avoiding, reducing or accelerating design decay. Design decay is a phenomenon
in which developers progressively introduce code with poor design structures
into a system [20, 66].

Two social aspects are central to open-source coding environments: com-
munication dynamics and discussion content (or communication content) [81,
9]. The former determines how the communication flows among developers,
who also play specific roles along the change under development. The latter
determines characteristics of the contents of comments exchange among devel-
opers. These two social aspects may be related to design quality for various
reasons, such as two examples described as follows. First, design decay may
be avoided, reduced or accelerated depending whether the communication dy-
namics of developers with specific roles is fluent and consistent along a change.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 32

Second, the characteristics of content of comments can determine the quality
of the discussion, and therefore be decisive to either improve or deteriorate the
structural design of a system.

Unfortunately, the relationship between these key social aspects and
design decay has not been studied so far. Prior works either investigate
technical aspects of design decay [17, 47, 27] or confirms the high frequency
of design discussions in pull-based software development [75, 57]. Studies of
social aspects focus on investigating their relations with post-release defects [9,
26, 18], pull request acceptance [10, 59], and software vulnerabilities [42].
Despite this vast body of knowledge, no study has performed a retrospective
investigation on the relationship between key social aspects in pull-based
development and design decay. Hence, it is unclear if social aspects, such as
communication dynamics and discussion contents, have a positive or negative
relationship with design decay.

This paper reports a retrospective study aimed at understanding the
role of communication dynamics and discussion content on design decay. We
focused our analysis on 11 social metrics related to these two aspects as well
as 4 control technical metrics typically used as indicators of design decay.
We analyzed more than 11k pull request discussions mined from five large
open-source systems. Our findings reveal that many social metrics can be
used to discriminate between design impactful and unimpactful pull requests.
Second, various factors of communication dynamics are related to design
decay. However, temporal factors of communication dynamics outperformed
the participant roles’ factors as indicators of design decay. Finally, we noticed
certain social metrics tend to be indicators of design decay when analyzing
both aspects together.

Section 3.2 provides background information and related work. Sec-
tion 3.3 presents our motivating example. Section 3.4 describes our study set-
tings. Section 3.5 presents the study results. Section 3.6 discusses threats to
validity. Finally, Section 3.7 concludes the paper and suggests future work.

3.2
Background and Related Work

3.2.1
Pull Request Discussion and Social Aspects

Pull requests contributions are increasing on open-source environments,
such as GitHub. Many open-source projects have guidelines to ensure the use
of pull requests for this task [22, 23]. The pull request mechanism is basically

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 33

started by a developer who submits his code contributions to a repository
describing his changes, e.g., new features, bug fixes, improvements. Next, the
changes are scrutinized by code reviewers of the organization until they are
merged or abandoned. In parallel, both contributors and reviewers can interact
through different discussions [63]: (i) discussions on the pull request itself, (ii)
discussions on a specific line within the pull request, and (iii) discussions on
a specific commit within the pull request. Moreover, these discussions may be
related or not to the complexity and impact of the changes submitted.

These discussions are not trivial since it may involve different social as-
pects that capture communication activity among developers and measures
the impact of interpersonal relations [81]. Examples of social aspects are com-
munication dynamics (or discussion dynamics) and discussion content. Com-
munication dynamics represent the role of participants involved in a discussion
or temporal aspects of the messages. For instance, a discussion that involves
developers with different roles (e.g., members, contributors, or newcomers). On
the other hand, the discussion content represents the interaction of developers
during the exchange of messages and obtained information about the content
of each message. For instance, the presence of code snippets, and the number
of words per comment.

3.2.2
Design Decay and its Symptoms

Software design results from a series of decisions made during software
development [71, 72]. However, along with software development, a software
design may decay due to the progressive introduction of poor structures into
the system, i.e., decay symptoms [20, 66, 77]. Such design decay is caused by a
successive increase in the density of symptoms along with software evolution.

Aimed at minimizing and removing decay symptoms, developers need
to identify and to refactor source code locations impacted by design decay.
Previous studies [66, 46, 83] have identified five categories of symptoms upon
which developers often rely to identify structural decay. Such studies observed
that developers tend to combine multiples decay symptoms by considering
dimensions such as density, and diversity to determine if there is code decay.

In this work, we focus on two categories of symptoms: low-level and
high-level structural smells [61]. Low-level structural smells are indicators of
fine-grained structural decay; their scope is generally limited to methods and
code blocks [61]. For instance, the Long Method smell. High-level structural
smells are symptoms that may indicate structural decay impacting on object-
oriented characteristics such as abstraction, encapsulation, modularity, and

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 34

hierarchy [37, 61]. An example of high-level structural smells that may be
used for finding design decay is Insufficient Modularization [61]. This symptom
occurs in classes that are large and complex, possibly due to the accumulation
of responsibilities. Symptoms of such categories can be automatically detected
using a state-of-the-practice tool called DesigniteJava [60].

3.2.3
Related Work

Social aspects in code review. There are multiple studies about the
influence of social aspects during code review [42, 59, 41, 77]. For instance,
Ruangwan et. al. [59] investigated how many reviewers did not respond
to a review invitation. The authors found that the more reviewers were
invited to a patch, the more likely it was to receive a response. Nevertheless,
Meneely et. al. [42] attempted to investigate Linus’ law to identify if it applies
to security vulnerabilities empirically. In this study, the authors concluded
that code files reviewed by more reviewers are more likely to be vulnerable.
While those works focus on analysing aspects surrounding code review tasks,
our study aims at investigating the social aspects occurring in discussions that
are not directly related to source-code.

Social aspects in open-source environments. Previous studies [84,
74] have investigated different social aspects in open-source environments, such
as GitHub. Yu et. al. [84] not only identified social patterns among developers
by mining the follow-networks, but also found that those repositories provide
transparent work environments for developers, promoting innovation, knowl-
edge sharing, and community building. Additionally, Tsay et. al. [74] found
that the social connection between submitters and core members has a strong
positive association with pull-requests acceptance. Previous work focused on
open-source environments and their relations. In order to complement these
studies, we will use some of the social aspects observed, such as communication
dynamics, to assess their influence on design decay.

Effect of social aspects on code quality. Bettenburg and Hassan [9]
investigated the impact of social interaction measures on post-release defects.
The authors observed that social information can not be used as a substitute to
traditional product and process metrics used in defect prediction models. Bird
et al. [11] examined the relationship between ownership and failures in two
large industrial software projects. They found that the number of developers
has a strong positive relationship with failures. Falcão et al. [18] investigated
the relationship between social, technical factors, and the introduction of bugs.
The authors identified that both social and technical factors can discriminate

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 35

between buggy and clean commits, such as ownership level of developers’
commit, and social influence. These works use social and technical metrics
to understand the influence over the presence of code defects. Our work differs
from these studies, by analyzing if and what extent metrics related to two
social aspects are good indicators of the design decay.

Our work differs from the existing ones in several ways: (i) we analyzed
social aspects not only related to code review tasks; (ii) while most studies are
focused on analyzing the influence of social aspects on software defects and
vulnerabilities, we investigated the influence of social aspects on design decay;
and (iii) we used a multiple logistic regression model technique to evaluate
which social aspects indicate design decay separately and together.

3.3
Motivating Example

Figure 3.1: Discussion in pull request #8153 from Elasticsearch project

1

2

3

4

5

6

This section presents a real example in which design decay was introduced
in the system after merging a pull request. We aim to highlight possible
aspects surrounding the discussion that could have possibly indicated that the
changes would influence a design decay. For this purpose, we adopt merged pull
request #8153 from the Elasticsearch project, to motivate our study. Figure 3.1
illustrates this pull request in two parts that represent two periods: before and
after the merge. We discussed our example step-by-step as follows.

This pull request was titled “Add inner hits to nested and parent/child
queries” and its main goal was the addition of a new feature. As seen in step

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 36

1 , the discussion starts with the author reporting that his pull request is
related to Issues #3022 and #3152. This discussion evidence the existence of
multiple concerns being addressed in the same pull request. Moreover, after
a few rounds of review by two different reviewers, this pull request was also
mentioned on another Issue (# 761). Further in the discussion (step 2), we can
observe that another participant, an user, joins the discussion by asking the
author for information about the performance of the feature being developed,
in his use case. The author promptly answers the user and returns to discussing
his code changes.

Perhaps due to the precedent set, another participant, also an user, joins
the discussion (step 3) and also asks something about the feature, and again,
the author answers it; but this time, reaches the conclusion that the question
relates to another unreleased feature. After this, the user who asked the first
question comments again (step 4) giving suggestions about how the feature
should be implemented, which this time are never answered by the author.

A few rounds of review later, and the Pull Request is merged. The changes
contained in this pull request ended up being large, with one reviewer later
saying “If you perform some changes, please do them as separate commits so
that I don’t need to review everything again, this change is BIG!” (shown in
step 5). When the change was merged, a new issue (#8153) was also associated
to the pull request, further indicating that new concerns were added during
the development of the code changes (step 6).

After the Pull Request was merged, four more users commented asking
questions related to the feature being introduced: “can I bump our use case
against this to see if I am understanding this feature correctly?”, “Has this
work be slated for a particular release yet?”, and so on. The discussion in this
pull request continued for seven months after the merge, containing multiple
questions and suggestions for possible improvements.

In this example, we can observe many social aspects surrounding the
discussion, such as: (i) different participant roles (core developers of the
organization, contributors and users); (ii) temporal aspects (the time span of
the pull request); and, (iii) size and content of comments (snippets being used).
One could argue that, some of those social aspects could indicate or even be
responsible for changes that lead to introduction of the design decay symptoms
into the system. For instance, the presence of users (i.e. participants that never
committed on the repository) commenting and raising extra concerns to a pull
request, could have raised the complexity of the changes. As a consequence,
an increase in the design decay symptoms could have happened.

This example shows a scenario where several confounding aspects created

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 37

a situation where design decay symptoms were unknowingly increased in the
system. By analyzing some of those aspects, such as process metrics relating
to the changes and metrics about social aspects related to the discussion, we
hope to improve our understanding on some of the situations and behaviors
that guide those discussions and the development contained within them, and
by doing that, we hope to also improve our knowledge about how those aspects
can influence design decay.

3.4
Study Settings

3.4.1
Goal and Research Questions

We relied on the Goal Question Metric template [82] to describe our
study goal as follows: analyze social aspects; for the purpose of understanding
their impact on design decay; concerning changes in structural design quality;
from the viewpoint of software developers when performing code changes; in
the context of five open-source systems. We introduce each research question
(RQs) as follows.

RQ1: Are social metrics related to design decay? – RQ1 aims at investi-
gating if there is a statistically significant difference between social measures
for impactful pull requests and unimpactful ones. We consider that a merged
pull request is impactful when an increase or decrease in design decay was ob-
served as a result of merging the pull request changes. Conversely, unimpactful
pull requests are merged pull requests that do not affect on the design decay.
Thus, by answering RQ1, we will be able to understand which social metrics
are more related or not with impactful pull requests.

RQ2: To what extent the communication dynamics influence the design
decay? – During software development, the influence of different social aspects
may contribute to design decay. Thus, differently from the previous research
question, RQ2 aims at investigating to what extent multiple social metrics
related to the communication dynamics aspect influence design decay. Thus
by answering RQ2 we can evidence whether each social metric, by considering
the presence of others, can be used as indicators of design decay.

RQ3: To what extent the discussion content influence the design decay?
– Similar to RQ2, we investigate as multiples social metrics related to the
discussion content aspect influence design decay. By answering RQ3, we also
can compare which social aspects, i.e., communication dynamics and discussion
content when analyzed in isolation, are sufficient or not to indicate a design

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 38

decay. Furthermore, we can reveal if the combination of these multiple social
aspects results in a better indication of the design decay. Our goal is to provide
a set of metrics that can be used, in the context of social aspects on discussions
inside pull requests, to indicate the increase or the decrease of design decay
symptoms. By doing this, we can shed light on future work on social aspects
and design decay.

3.4.2
Study Steps and Procedures

Step 1: Selecting open-source systems. From GitHub, we selected
five open-source Java projects that widely adopt pull request-based develop-
ment. We selected only open-source projects to allow study replication. To
select them, we followed criteria based on related studies [74, 18]. We selected
systems that matched with the following criteria: (i) systems that use pull re-
quest reviews as a mechanism to receive and evaluate code contributions; (ii)
systems that have at least 1k commits and pull requests; (iii) systems that are
at least 5 years old and are currently active. Moreover, we selected this criteria
to avoid known mining perils [31]. Finally, we focused on Java systems due
to constraints of the DesigniteJava tool [60] (see Step 2). Table 3.1 provides
details about each selected system. The first column shows the names of each
selected system and the remaining columns present: system’s domain; number
of commits; number of pull-requests; and period considered in this study.

Table 3.1: Software systems investigated in this study
System Domain # Commits # Pull-requests Time span LOC
Elasticsearch Search Engine 17,251 4598 2011-2018 734,514
Presto Query Engine 1,958 1,542 2012-2019 635,760
Netty Framework 4,071 147 2011-2019 279,572
OkHttp HTTP client 9.690 4,013 2012-2019 36,686
RxJava Library 4,140 1,299 2013-2016 103,609

Step 2: Detecting multiple design decay symptoms. We used
the DesigniteJava tool [60] to detect a total of 27 decay symptoms types:
17 high-level structural smells, and 10 low-level structural smells. Hence, for
each system, we identified these decay symptoms by considering each pull
request that has been submitted and merged during the project history. For
each merged pull request, we have downloaded a snapshot of each commit
related to this pull request and its parent. Then, we accessed the difference
between them, by following this methodology, we are guaranteeing that the
introduced design decay symptoms were solely introduced by the code change
in the pull request, this way we avoid the Rebase effect [51, 52]. This is due
to such a pull request being the only potential point in time in which the
code could be changed. Table 3.2 lists the 27 symptoms types investigated

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 39

in our study, where the high-level structural smells and low-level structural
smells are presented in the upper and bottom halves of the table, respectively.
The descriptions, detection strategies, and thresholds for each symptom are
available in our replication package [7].

Table 3.2: Degradation symptoms investigated in this study
High-level symptoms
Imperative Abstraction, Multifaceted Abstraction, Unutilized Abstraction,
Unnecessary Abstraction, Deficient Encapsulation, Unexploited Encapsulation,
Broken Modularization, Insufficient Modularization, Hub Like Modularization,
Cyclic Dependent Modularization, Rebellious Hierarchy, Wide Hierarchy,
Deep Hierarchy, Multipath Hierarchy, Cyclic Hierarchy, Missing Hierarchy,
Broken Hierarchy [61].
Low-level symptoms
Abstract Function Call From Constructor, Complex Conditional, Complex Method,
Empty Catch Block, Long Identifier, Long Method, Long Parameter List,
Long Statement, Magic Number, Missing Default [61].

Step 3: Computing design decay indicators in terms of density
symptoms. Based on previous studies [66, 48, 50, 77, 76, 86], we have selected
the density of symptoms as indicators of design decay1. For this purpose,
for each target system, we computed the difference of the indicator for each
decay symptom, i.e., high-level and low-level structural smells, by considering
all merged pull requests collected. We computed the density as a sum of
the aggregate value of the number of instances of symptoms types in each
smelliness file for each version of the system before and after the merged pull
request. In summary, a positive difference in the density of symptoms indicates
an increase in the design decay as a result of the merged pull request, therefore,
there is a worsening on the design. Similarly, a negative difference in density
of symptoms indicates a decrease of the design decay as a result of the merged
pull request. Finally, a difference equal to zero in the density of symptoms
indicates that there has been no structural design change. In total, we have
computed the four indicators for 11,599 merged pull requests. We provide all
computed indicators in our replication package [7].

Step 4: Calculating control metrics and social aspects. Table 3.3
shows the 15 metrics that we have used to measure certain social aspects
occurring parallel to the code development. The first part of Table 3.3 describes
the control variables that we computed to avoid some factors that may
affect our outcome if not adequately controlled. As control variables, we used
product and process metrics, which have been shown by previous research
to be correlated with design decay [54, 33]. The second part of Table 3.3
describes the metrics that we considered as independent variables to measure
certain social aspects. We have grouped each metric in two categories, each one

1We also compute diversity as an indicator. However, we did not observe any difference
in the results of density and diversity. Thus, we decided to use only density.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 40

representing a social aspect. Communication dynamics represent the dynamic
of the discussion activity, such as the role of participants involved in a
discussion or temporal aspects of the messages. Finally, discussion content
represents the interaction of developers during the exchange of messages and
obtained information about the content of each message. For instance, the
number of snippets written in a discussion. We emphasize that these metrics
are extensively used by previous works as reported in [81] to measure the social
aspects. Moreover, all two categories investigated in our study suggest social
aspects that may be favorable or not the structural design change.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter3.
Revealing

the
SocialAspects

ofD
esign

D
ecay

41

Table 3.3: Control and independent variables used in our study.
Type Metrics Description Rationale

Control variables
Patch Size Number of files being subject of review. Large patches can be more prone to be analyzed for how the involved

classes are designed.
Diff Size Difference of the sum of the Lines of Code metric computed

on the version before and the version after the review of all
classes being subject of review

Large classes are hard to maintain and can be more prone to be
refactoring [53]

Product
Diff Complexity Difference of the sum of the Weighted Method per Class metric

computed on the version before and after review of all classes
being subject of review.

Classes with high complexity are potential candidates to be refactored

Process Patch Churn Sum of the lines added and removed in all the classes being
subject to review.

Large classes are hard to maintain and can be more prone to be subject
to refactoring [19, 76].

Independent variables
Number of Users Number of unique users that interacted in any way in a

discussion inside a Pull Requests (opened, commented, merged
or closed)

Number of Contribu-
tors

Number of unique contributors that interacted in any way in
a Pull Request (opened, commented, merged or closed)

Number of Core De-
velopers

Number of unique core developers that interacted in any way
in a Pull Request (opened, commented, merged or closed)

This metric allows us to identify discussions with the presence of
common users, constant contributors, experienced developers or
core members of the project [9].
The classification method can be found on [7].

Pull Request
Opened By

The type of user that has opened each pull request. The user
might be an Employee or Temporary. Employees are active
contributors and code developers. Conversely, temporary are
developers that do not actively work on the project or does
not work for the software organization

Pull Requests opened by temporaries have more risk of increasing
design symptoms [81]. The classification method can be found on [7].

Number of Com-
ments

Number of comments inside a Pull Request. Discussions with a high number of comments around a code change
would find possible design symptoms, improving or maintaining the
quality [9].

Mean Time Between
Comments

Sum of the time between all comments of a Pull Request
weighted by the number of comments.

A higher time between comments (e.g., a long pause in an otherwise
fast-paced discussion) are related to design decay [9].

Communication
Dynamics Aspect

Discussion Length Time in days that a Pull Request lasted (difference of creation
and closing days).

The longer is the discussion, the higher the chance of problems being
explained and solved, avoiding design decay [81].

Number of Snippets
in Discussion

The number of snippets inside each comment of a Pull Re-
quests. Those snippets are detected by the number of ′′′ (syn-
tax that opens a snippet in markdown) divided by two (open-
ing and closing).

Snippet Size Sum of the size of all snippets found on comments in a Pull
Request.

The higher the number of snippets in a discussion, the clearer
the users are trying to pass a message. Therefore, avoiding
confusion and possibly design decay [9].

Number of Words in
Discussion

Sum of the all words of each comment inside a Pull Request.
Here we applied the preprocessing in the text removing con-
tractions, stop words, punctuation, and replacing numbers.

Discussions with a high number of words are related to more complex
changes, that may lead to design decay [9].Discussion

Contents Aspect

Number of Words
per Comment in Dis-
cussion

Sum of the all words of each comment inside a Pull Request
weighted by the number of comments. Here we applied the
preprocessing in the text removing contractions, stop words,
punctuation, and replacing numbers.

Discussions with a high weighted number of words are related to more
complex changes, that may lead to design decay [9].

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 42

Step 5: Assessing the relationship between social aspects and
impactful pull requests. We use a statistical approach to determine which
social metrics are able to discriminate between impactful pull requests and
the unimpactful ones. We observe that the social metrics are not normally
distributed [39]. Thus, we use the Wilcoxon Rank Sum Test [80] to decide
whether a social metric is statistically different for impactful pull requests
when compared to the unimpactful ones. The test was conducted using the
customary .05 significance level.

Step 6: Evaluating the influence of multiple social aspects on
design decay. We assess the influence of each social aspect over the design
decay. For this purpose, we created a multiple logistic regression model for each
aspect, by considering each metric that composes an aspect in the presence
of each one other. Additionally, we also created a multiple logistic regression
model that combines all social aspects and their related metrics together. All
the social aspects and their related metrics presented in Table 3.3 are predictors
in the model, and the outcome variable is whether there was decay on the
design symptoms related to the merged pull request. We choose a multiple
logistic regression approach due to the fact that we are studying the effect of
multiple predictors (i.e., the metrics) in a binary response variable. We remove
from our models the metrics that have a pair-wise correlation coefficient above
0.7 [14] to avoid the effects of multicollinearity.

Furthermore, we measure the relative impact to understand the magni-
tude of the effect of the metrics over the possibility of a merged pull request
degrading the system design. We estimate the relative impact using the odds
ratio [15]. In our study, odds ratios represent the increase or decrease in the
odds of a pull request degrading the system occurring per “unit” value of a
predictor (metric). An odds ratio < 1 indicates a decrease in these odds (i.e.,
a risk-decreasing effect), while > 1 indicates an increase (i.e., a risk-increasing
effect). Most of our metrics presented a heavy skew. To reduce it, we apply
a log2 transformation on the right-skewed predictors and a x3 transformation
on the left-skewed. Moreover, we normalize the continuous predictors in the
model to provide normality. As a result, the mean of each predictor is equaled
to zero, and the standard deviation to one.

To ensure the statistical significance of the predictors, we employ the
customary p-value < .05 for each predictor in the regression models. Finally,
we also report the amount of deviance accounted for by our multiple logistic
regression models, in terms of the D-squared [25]. Similar to R-squared [39]
for linear regression models, the D-squared represents the goodness-of-fit of
logistic regression model, measured by the residual deviance (i.e., the deviance

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 43

that is unexplained by the model). A perfect model has no residual deviance
and its D-squared takes the value of 1.

3.5
Results and Discussion

3.5.1
Social Metrics and Impactful Pull Requests

We address RQ1 by understanding which social metrics can discriminate
between impactful pull requests and unimpactful pull requests. As described
in Step 3 of Section 3.4.2, we consider that a merged pull request is impactful
when it increases or decreases the design decay. Conversely, unimpactful pull
requests do not affect the design decay. Table 3.4 shows the results of the
Wilcoxon Rank Sum test [80] grouped by social aspects metric, design decay
symptom, i.e., low-level and high-level structural smells, and system. Each row
represents the p-values of the metrics obtained as results of the Wilcoxon Rank
Sum test for each grouping. The last column (All) represents the results from
all systems combined. The cells in gray represent the p-values that obtained
statistical significance (i.e., p-value < .05), where there is a valid distinction
between impactful and unimpactful pull requests.

Table 3.4: Results of the wilcoxon rank sum test grouped by social metrics,
design decay symptom and software system

Elasticsearch Netty Okhttp Presto RxJava AllSocial Metrics High-level Low-level High-level Low-level High-level Low-level High-level Low-level High-level Low-level High-level Low-level
Comments <.001 <.001 .019 .019 <.001 <.001 <.001 <.001 .026 .026 <.001 <.001
Users .008 .008 .060 .060 .093 .093 <.001 <.001 .156 .156 <.001 <.001
Contributors .002 .002 .701 .701 <.001 <.001 <.001 <.001 .006 .006 <.001 <.001
Core Devs <.001 <.001 .117 .117 .002 .002 .006 .006 .251 .251 <.001 <.001
MTBC <.001 <.001 .001 .001 <.001 <.001 <.001 <.001 .001 .001 <.001 <.001
DL <.001 <.001 .034 .034 <.001 <.001 <.001 <.001 .065 .065 <.001 <.001
of Snippets <.001 <.001 .022 .022 .007 .007 <.001 <.001 .021 .021 <.001 <.001
NWD <.001 <.001 .005 .005 <.001 <.001 <.001 <.001 .003 .003 <.001 <.001
NWPCD <.001 <.001 .004 .004 <.001 <.001 <.001 <.001 .016 .016 <.001 <.001
Snippets Size <.001 <.001 .022 .022 .011 .011 <.001 <.001 .018 .018 <.001 <.001

The relationship with impactful pull requests. Table 3.4 reveals
some interesting conclusions. First, we observed that many metrics were sta-
tistically different for impactful pull requests when compared to unimpactful
ones. This observation is consistent in all projects analyzed. Moreover, note
that the Discussion Length (DL) and the Number of Contributors (# Con-
tributors) metrics are statistically different in 4 out of 5 projects (80%). We
also observed that the Number of Users and Number of Core Developers met-
rics reached statistical significance in 40% and 60%, respectively. Additionally,
social metrics related to the participant role (communication dynamics) were
the ones that presented a more unstable behavior, only 66% of the cases were
statistically different. These results show that social metrics can differentiate
impactful pull requests from the unimpactful pull requests. Metrics from both

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 44

social aspects might be good indicators to identify potential impactful pull
requests. This result evidence the rationale that pull requests with high values
for these metrics need more attention and concern of software organizations.
For such cases, software organizations could monitor significant changes in the
values of these metrics. Such changes may indicate an increase or decrease in
design quality.

Finding 1: Social aspects are able to differentiate impactful pull requests
from the unimpactful ones. Besides, software organizations could monitor
significant changes to avoid design decay.

3.5.2
Communication Dynamics and Decay

We address RQ2 by understanding the influence of the communication
dynamics over the design decay, we assessed the effect of each metric that
composes this aspect in the presence of each one other. We have applied a
multiple logistic regression to support this assessment (Step 6 of Section 3.4.2).
The results of this analysis are summarized in Table 3.5. Each row contains the
results of the metrics for each project, divided by high-level structural smells
and low-level structural smells. The last column presents the D-squared of
the regression model and the percentage increase or decrease in the D-squared
compared to a model with only control metrics. The last row contains the
results for the data of all projects combined. Moreover, the grey cells represent
the statistically significant metrics (p-value < .05) and the arrows represent
the following behavior: risk-increasing (arrow up) and risk-decreasing (arrow
down). Finally, the blank cells represent metrics that were removed from the
model for being collinear. We discuss the results as follows.

Table 3.5: Results of the odds ratio analysis for the communication dynamics
Control Variables Communication Dynamics AspectSystem Symptom PS PC DC DS # Commts # Users # Contrib # Core Devs OBTemp MTBC DL D-squared

High Level 0.576 ↓ 6.992 ↑ 0.805 1.076 1.358 1.1 2.006 1,18 1.023 0.077 (-10.46%)elasticsearch Low Level 0.576 ↓ 6.992 ↑ 0.805 1.076 1.358 1.1 2.006 1,18 1.023 0.077 (-10.46%)
High Level 1.835 ↑ 1.038 0.997 0.987 1.037 4.336 1.185 ↑ 1.302 ↑ 0.432 (42.57%)netty Low Level 1.835 ↑ 1.038 0.997 0.987 1.037 4.336 1.185 ↑ 1.302 ↑ 0.432 (42.57%)
High Level 3.572 ↑ 1.07 0.921 0.978 0.473 1.227 ↑ 1.025 0.240 (7.14%)okhttp Low Level 3.572 ↑ 1.07 0.921 0.978 0.473 1.227 ↑ 1.025 0.240 (7.14%)
High Level 10.753 ↑ 0.747 0.627 0.68 1.265 4.266 1,914 1.022 0.214 (239.68%)presto Low Level 10.753 ↑ 0.747 0.627 0.68 1.265 4.266 1,914 1.022 0.214 (239.68%)
High Level 1.875 ↑ 0.906 1.176 0.938 1.088 1,223 0.89 0.045 (28.57%)rxjava Low Level 1.875 ↑ 0.906 1.176 0.938 1.088 1,223 0.89 0.045 (28.57%)
High Level 3.815 ↑ 0.911 1.099 ↑ 1.001 0.949 1.046 1.178 ↑ 1.071 0.209 (409.75%)all Low Level 3.815 ↑ 0.911 1.099 ↑ 1.001 0.949 1.046 1.178 ↑ 1.071 0.209 (409.75%)

Risk-increasing effect of communication dynamics. Table 3.5
shows that one out of the five metrics related to a specific role of the developer
(i.e, user) involved in a discussion, i.e., the Number of Users (# Users), has a
risk-increasing tendency. Additionally, all metrics related to temporal aspects
of communication i.e., Mean Time between Comments (MTBC) and Discussion

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 45

Length (DL) also presented a risk-increasing tendency. More precisely, the
metric # Users was statistically significant when we combined the data of all
projects. Conversely, the Discussion Length was statistically significant only for
the Netty project. Finally, the Mean Time between Comments was statistically
significant for two projects (Netty and OkHttp), and when we combined all
data.

These results reinforce two rationales. First, pull requests with a high
mean time between comments are related to design decay. In other words,
pull request discussions with a high delay between the comments lead to poor
workflow with little communication dynamics between developers, indicating a
risk-increasing effect. The delay is usually related to either the lack of interest
or the fact the proper knowledge is being forgotten along the conversation.
Second, a higher number of users participating in a discussion may hinder the
communication dynamics, mainly when these users are not familiar with a
system feature, or just by filling the discussion environment with meaningless
messages. For such cases, the developers involved can be induced to increase
the complexity of the change. Such changes can lead to an increase in design
decay as observed in our motivating example (Section 3.3).

Moreover, the result about pull requests with long discussions which
presented a decay risk-increasing effect was surprising. One may expect that
longer discussion increases the chances of issues being explained and resolved,
avoiding design decay. Such a result suggests that long discussions do not
increase the developer’s engagement on being conscious with the design
structure, increasing the chances of design decay. We observe this phenomenon
in the pull request #1388 from the OkHttp project, for instance.

This pull request was opened by a contributor that explained their code
changes in detail through two big comments (131 and 179 words each).

Almost a month later, a core member of the project reviews the code and
replies to the author with an apology for the delay in the review. Next, the
author replies to the reviewer a week later.

After a long review process, the core member asked to author why the
tests were failing. Then, the author replied with a big comment (213 words)
answering the concern about the test of the core member. Moreover, the pull
request merge only would happen three weeks later, when, again, the reviewer
apologized for his delay. In the end, this pull request did induce an increase in
the design decay, confirming our rationale for MTBC and DL metrics.

These observations suggest that future empirical studies should focus
more on the temporal aspects of communication dynamics, which have been
neglected so far. When one has to focus on a reduced set of metrics, such

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 46

metrics of temporal factor should be part of his priorities. Also, the core
members of organizations should pay more attention to this kind of social
factor to avoid design decay.

Finding 2: Social metrics related to temporal aspects of communication
dynamics work better as indicators of design decay increase than metrics
related to the role of participants.

Risk-decreasing effect of communication dynamics. The data
presented in Table 3.5 also allows us to observe that metrics that measure
the communication flow among developers during a pull request discussion
provide a better indication of the design decay than metrics that measure the
role of the developers. By complementing the previous finding, we also observed
that metrics related to the communication dynamics aspect, in general, help to
characterize only the risk-increasing effect. This happens even in the presence
of control metrics.

Finding 3: In general, the aspect of communication dynamics is a better
indicator of increase in design decay symptoms.

The strength of communication dynamics metrics compared to
current models. Finally, we also assess to what extend the metrics related
to communication dynamics are complementary with the control variables. As
shown in Table 3.5, we used four control variables that represent variables
widely used in the current models of design decay analysis (Patch Size, Diff
Size, Diff Complexity, and Patch Churn). We note that in the three cases where
communication dynamics metrics were statistically significant in comparison
with the control variables, the D-squared of the models only increased, rang-
ing from 7.14% (OkHttp) up to 409.75% (all data combined). Such finding
indicates that the use of communication dynamics metrics increases the ex-
planatory power of design decay models when compared to models with only
control metrics.

Finding 4: The metrics of communication dynamics can increase the
explanatory power of current design decay models. Thus, metrics from
this aspect are relevant indicators of design decay.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 47

3.5.3
Discussion Content and Decay

By following the same procedures of the previous research question, in
RQ3 we aim to understand the influence of the discussion content over the
design decay. For this purpose, we also assessed the effect of each metric that
composes this aspect in the presence of each one other. The results of this
analysis are summarized in Table 3.6, in which we also used the odds ratio
technique to explain the effect of this social aspect over the design decay.
Similarly to Table 3.5, the grey cells represent the statistically significant
metrics (p-value < .05), and the arrows represent the risk-increasing (arrow
up) and risk-decreasing (arrow down) effects. The blank cells are the metrics
missing due to collinearity. Finally, the last column presents the D-squared of
the regression models.

Table 3.6: Results of the odds ratio analysis for the discussion content
Control Variables Discussion Content AspectSystem Symptom PS PC DC DS Number of Snippets NWD NWPCD Snippet Size D-squared

High Level 4.488 ↑ 0.817 7.772 1.187 0.137 0.050 (-41.86%)elasticsearch Low Level 4.488 ↑ 0.817 7.772 1.187 0.137 0.050 (-41.86%)
High Level 1.882 ↑ 1.075 1.125 1.115 0.319 (5.28%)netty Low Level 1.882 ↑ 1.075 1.125 1.115 0.319 (5.28%)
High Level 2.391 ↑ 1.508 1.018 0.764 0.215 (-4.01%)okhttp Low Level 2.391 ↑ 1.508 1.018 0.764 0.215 (-4.01%)
High Level 4.461 ↑ 1.141 13.848 0.128 (103.17%)presto Low Level 4.461 ↑ 1.141 13.848 0.128 (103.17%)
High Level 1.858 ↑ 0.332 0.804 ↓ 3.542 0.045 (28.57%)rxjava Low Level 1.858 ↑ 0.332 0.804 ↓ 3.542 0.045 (28.57%)
High Level 2.023 ↑ 1.097 9.907 ↑ 0.105 ↓ 0.968 0.109 (165.85%)all Low Level 2.023 ↑ 1.097 9.907 ↑ 0.105 ↓ 0.968 0.109 (165.85%)

Risk-increasing effect of the discussion content. Table 3.6 presents
that only the metric Number of Words in Discussion (NWD) presented a risk-
increasing tendency when we combined the data of all projects. To understand
this result we also need to address another metric of the table, the Number of
Words per Comment in Discussion (NWPCD), which presented a risk-decreasing
effect, since the rationale of these two metrics is linked. The metric NWD
indicated that the higher the number of words in a discussion the bigger would
be the risk of design decay. However, the metric WPCD shows us that the higher
is the number of words, but weighted by the number of comments, the smaller
would be the risk of design decay. Moreover, these two metrics do not conflict,
but they are complementary as indicators of design decay.

We observed that the NWD can indicate an increase on design decay when:
(1) a discussion has a high number of comments and a high number of words,
however, these words are concentrated only in a few comments; and (2) a
discussion have a high number of comments and a low-mid amount of words in
each comment. Additionally, these high numbers of words concentrated on few
comments may be indicators that only few participants were truly engaged or
providing useful pieces of information. Hence, the case (2) happens when the

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 48

conversation: (i) does not contain a set of relevant information, (ii) message
contents do not say much.

To exemplify the cases, we can observe the Pull Request #1388 from
the OkHttp project, already discussed in this paper, regarding the case (1)
aforementioned. The discussion on this pull request presented seven comments,
three of them containing over one hundred words (131, 178 and 213), and
they were all made by the author of the pull request. However, the other four
remaining ones did not have more than 35 words, which were made by a core
member working on reviewing the pull request.

These results imply that the size of a discussion is related to design decay.
The developers should evaluate the quality of their comments since their size
alone do not avoid the design decay.

Finding 5: Discussions with a high number of words, when it is not
accompanied by a high number of words per comment, work as indicators
of design decay increase.

Risk-decreasing effect of the discussion content As stated in
the previous finding, we also observed that the metric Number of Words
per Comment in Discussion (NWPCD) presented a risk-decreasing effect.
Moreover, this behavior was observed on the RxJava project, and when we
combined all data of projects. This result also suggests that, even in situations
where the number of comments is low, but the number of words per comment
is high, there is a high volume of information that may be related to the
complexity of the change. As well as discussion on changes that may affect the
structural quality of the system. In other words, there is a concentration of
useful comments.

Finding 6: In general, the discussion content can indicate the increase
(number of words in discussion) and the decrease (number of words per
comment in discussion) of design decay symptoms.

The strength of discussion content metrics compared to current
models. Similarly to RQ2, we assess how discussion content metrics can
complement control metrics. Table 3.6 presents the D-squared measure of the
studied models and the percentage increase or decrease in this measure when
compared to current models. In summary, we observed two cases in which
discussion content metrics were statistically significant: the D-squared of the
models increased 28.57% (RxJava) and 165.85% (all data combined). These
results indicate that the discussion content metrics are also able to increase
the explanatory power of design decay models.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 49

Finding 7: Discussion content metrics may be significant indicators of
design decay due to the increase of explanatory power when included in
current models.

The communication dynamics aspect vs. discussion content
aspect. By comparing the results obtained by each social aspect in isolation
(Tables 3.5 and 3.6), we observed that the discussion content metrics help
to characterize both risk-increasing and risk-decreasing effects. However, the
communication dynamics metrics, in general, help to characterize only the
risk-increasing effect. This happens even in the presence of control metrics. In
summary, this result indicates the future studies should consider both aspects,
i.e., communication dynamics and discussion content. However, the discussion
content aspect can be prioritized when there is a need for a reduced number of
metrics. The metrics of this aspect when combined with control metrics help
to characterize both risk-increasing and risk-decreasing of design decay.

Finding 8: The metrics related of discussion content provide a better
indication of design decay than communication dynamics metrics, even in
the presence of control metrics. In any case, both social aspects have shown
to be good selecting indicators of design decay.

When looking at all social aspects together, which behavior
do we see? Table 3.7 presents the results of the odds ratio analysis when
we combined our two social aspects (communication dynamics and discussion
content) and using the projects combined data. This table reveals interesting
results. First, when we combine the two social aspects, new metrics related
to the communication dynamics appear as statistically significant: Number of
Comments and Number of Core Developers. Both metrics presented a risk-
decreasing effect. Such a result reveals that the communication dynamics is
also a good indicator of a decrease in design decay. Finally, the combination
of social aspects did not lead to any of the previously discussed metrics being
irrelevant.

These observations suggest that depending on the models you want to
build and the aspects to be observed, new social metrics can rise as indicators
of design decay. Table 3.7 allows us to observe that the addition of both
social aspects’ metrics to the current models resulted in an increase in the D-
squared by 197.56%. These results indicate that communication dynamics and
discussion content accounted for a major contribution of deviance compared
to current models. Such a result highlights the importance of social aspects
when studying design decay.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 50

Table 3.7: Results of the odds ratio analysis with both social aspects together
for all project data

Metrics High level Low level
Control variables
Patch Size 1.971 ↑ 1.971 ↑
Diff Size
Diff Complexity
Patch Churn
Communication Dynamics
Number of Users 1.109 ↑ 1.109 ↑
Number of Contributors 0.885 0.885
Number of Core Developers 0.848 ↓ 0.848 ↓
Opened By: Temporaries 0.902 0.902
Number of Comments 0.346 ↓ 0.346 ↓
Mean Time Between Comments 1.081 1.081
Discussion Length 1.153 ↑ 1.153 ↑
Discussion Content
Number of Snippets in Discussion 1.334 1.334
Snippet Size 0.76 0.76
Number of Words in Discussion 15.288 ↑ 15.288 ↑
Number of Words per Comment in Discussion 0.211 ↓ 0.211 ↓
D-squared 0.122 (197.56%) 0.122 (197.56%)

Finding 9: When combining both social aspects in the model, two new
metrics appear on the model as risk-decreasing indicators, suggesting
that different metrics can emerge as design decay indicators in different
situations.

3.6
Threats to Validity

Construct and Internal Validity. This study analyzes a range of 27
types of decay symptoms. Thus, our findings might be biased by these types,
even though they are commonly investigated by previous works [48, 60, 61]. We
have used the DesignateJava tool to detect these symptoms. Thus, aspects such
as precision and recall may have influenced the results of this study. However,
DesigniteJava has been used successfully in recent studies [60, 4, 48, 77], and
previous work [62] indicated a precision of 96% and a recall of 99%. The metrics
chosen to represent the social aspects may not fully represent all the possible
interactions among developers that could lead to design decay. To mitigate this
threat, we choose social aspects already analyzed by previous work and metrics
of process and product, that are commonly used for design decay analysis.

Conclusion and External Validity. We carefully performed our de-
scriptive and statistical analyses. Regarding the descriptive analysis, three pa-
per authors contributed to the computation of the merged pull request im-
pact on the density of symptoms. With respect to the statistical analysis, the
metrics used in this study did not follow a normal distribution due to high
skewness. To mitigate that, we used the non-parametric Wilcoxon Rank Sum

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 51

Test [80] on RQ1 and, for the regression analysis, we reduced the heavy skew
of our metrics by applying log2 and x3 transformations. Moreover, since multi-
collinearity of predictors may heavily affect the results of a multiple regression
model [14], we removed from our models the predictors with pair-wise correla-
tions above 0.7 (see Section 3.4). We also normalized the continuous predictors
in the model to ensure normality. Furthermore, in our regression models, we
controlled some factors that may affect our outcomes via control variables (see
Section 3.4.2). Finally, we have investigated design symptoms in Java software
systems only. Thus, our study results may be biased by the underlying code
structure of Java-based systems, although we highlight that Java is one of the
most popular programming languages in both industry and academia.

3.7
Conclusion and Future Work

This work investigated the relationship between two social aspects,
communication dynamics and discussion content, and design decay. For that,
we collected pull request data from five open-source systems, assessed 27 types
of design decay symptoms, 4 control variables and 11 social metrics related to
two social aspects.

From that analysis, we reported the following findings: (i) social aspects
can distinguish impactful and unimpactful pull requests; (ii) temporal factors
of the communication dynamics are better indicators of an increase in design
decay than the developers’ roles; (iii) the communication dynamics is the best
indicator of increase on the design decay; (iv) social aspects should be included
in current models of design decay analysis as they improve the explanatory
power of the models. We believe that these findings can benefit both developers
and software organizations, as they can be more aware of what their behaviors
can impact the code they are producing.

As future work, we intend to assess the importance of contribution that
are external factors to the analyzed projects. For instance, we plant to better
understand other social aspects that relate to design decay, such as developers’
experience and their interactions in other communities. These two aspects are
not inherently developed along the present project, but instead accumulated
from previous developers participation in other software projects. Moreover,
we intend to expand our work on design decay to analyze a wider amount
of technical (e.g., software metrics) and social (e.g., social network measures)
aspects.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 3. Revealing the Social Aspects of Design Decay 52

3.8
Summary

In the study presented in this chapter, we contributed for addressing the
two specific problems of this dissertation (see Section 1.1). Regarding the first
problem – i.e., lack of evidence on which social metrics distinguish impactful
from unimpactful pull requests – we observed that all social metrics, from
both aspects, are indeed able to distinguish impactful and unimpactful pull
requests. Therefore, software organizations can monitor significant changes in
such social metrics to understand design changes.

As previously mentioned, this study also contributed for addressing
our second research problem: “There little knowledge on the influence of
communication dynamics, discussion content, and organizational dynamics on
design decay”. Regarding this problem, we only investigated the first two
social aspects (i.e., communication dynamics and discussion content). Our
results showed that temporal factors of the communication dynamics are better
indicators of an increase in design decay than the role of developers. We also
observed that communication dynamics metrics are better indicators of design
decay when compared to the discussion content metrics.

In the next chapter, we present a differentiated replication of the study
presented in this chapter. One of the goals of the replication is to overcome
some of the weaknesses that affect our experimental design (more detail in
the Chapter 4). We also aim to validate the results presented here in a larger
dataset (5 vs. 7 systems). Finally, we aim to completely address our second
research problem by investigating the organizational dynamics aspect together
with the aspects investigated in this chapter.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

4
On the Relationship between Social Aspects and Design
Decay

Design decay is an important concern during software development.
Empirical studies have demonstrated that different technical and social aspects
are related to the increase and reduction of design decay [77, 76, 6, 86]. In this
context, three central social aspects may contribute to increasing or reducing
design decay: (i) communication dynamics among developers; (ii) discussion
content itself may be decisive to either improve or deteriorate the structural
design of a system; and (iii) organizational dynamics that represent the aspects
of the team as a whole. The aspects (i) and (ii) were investigated in Chapter 3.
However, the aspect related to organizational dynamics and how it influences
design decay have not yet been explored.

Consequently, the lack of empirical investigation of this social aspect,
does not allow us to reveal, for instance, the importance of team size and
gender diversity on the design decay. Moreover, the manifestation of these
three social aspects together along software development can induce behaviors
that possibly affect the design quality of the code under development.

Thus, this chapter introduces a replication study aimed at better under-
standing the characteristics of communication dynamics, discussion content,
and organizational dynamics on design decay. We report a differentiated repli-
cation of the work presented in Chapter 3 in which we (i) overcome some of the
weaknesses that affect their experimental design, (ii) answer the same research
questions of the original study on a much larger dataset (5 vs. 7 systems), and
(iii) analyze the influence of new key social aspect – organizational dynamics –
on design decay. Our results confirm and reassess the findings of the replicated
study, and reveal that various factors of organizational dynamics are related
to design decay. Such results are complementary to the obtained results in
Chapter 3. Moreover, the study reported in their chapter also contributes to
addressing research problems 1 and 2 (see Section 1.1) of this Master disser-
tation.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 54

4.1
Introduction

During the pull request development model, developers communicate
among each other in order to improve the code they are developing [13, 21, 68,
77]. This interchange of expertise between the code author and participants of
the pull request is surrounded by many social aspects, for instance, the content
of the messages being exchanged [81, 6]. These social aspects can be found
in modern collaborative software development platforms, such as GitHub 1,
through mechanisms as commit messages, pull requests conversations, issues
comments, and organizational data.

With the need to maintain or increase the quality of the code, many
studies assess factors related to design decay [66, 46, 83]. A program code
is considered to have design decayed if it is more difficult to make a code
change than it should be [16]. Moreover, design decay can be measured by
multiple symptoms, also popularly known as code smells. These symptoms
are indicators of structural design decay in the scope of methods and code
blocks [61]. An example of design decay symptoms is the Long Method smell.

As number of newcomers on projects increases, the pull request develop-
ment model becomes mandatory in many open-source communities. There are
even extensive guidelines explaining how to make a good pull request [22, 23].
The existence of such guidelines is explained by the need for improving and
maintaining the quality of the systems [40, 85, 34]. In this vein, each partici-
pating developer inspects the code owned by another developer and discusses
the possible problems and the ways to improve it with the community. How-
ever, social software development may not always be beneficial. For example,
previous studies [5, 43, 56, 77, 76] even suggest that code review activities may
increase design decay in certain circumstances.

Barbosa et al. [6] conducted a study focusing on social aspects surround-
ing pull request conversations, which are discussions not directly related to
source code but happening in parallel to code reviews. They used the Desig-
nite [60] tool to build a dataset of 27 decay symptoms from 23.280 commits,

1https://github.com

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 55

related to merged pull requests of five open-source projects hosted on GitHub:
elasticsearch, presto, rxjava, netty, and okhttp. They mined 11.600 pull re-
quests to generate a dataset of eleven social metrics for those systems. Finally,
they applied two statistical tests: (i) Wilcoxon Rank Sum Test, to assess if
social metrics were able to differentiate between impactful pull requests (de-
cay increased or decreased) and non-impactful pull requests (decay did not
change); and (ii) Multiple Logistic Regression, to evaluate the influence of
each metric, in the presence of others metrics, on the design decay symptoms.
Finally, they concluded that the social aspects are able to differentiate between
both types of pull requests (impactful and non-impactful) and that multiple
social aspects metrics are related to both increase and decrease of the design
decay symptoms.

In Barbosa et al. [6], their main limitations are: (i) number of projects;
(ii) only two social aspects (communication dynamics and discussion content);
(iii) the high level of discussion content metrics – only dimensions related to
its size; and (iv) their assumption of increases and decreases of design decay
symptoms only relies on a quantitative tool (Designite). Thus, this study focus
on overcoming these limitations by: (i) Increasing the number of projects from
5 to 7; and (ii) Addition of a new social aspect. While the previous considered
aspects cover a large amount of information, they lack in social information
about the organization itself. In order to improve upon this limitation, our
study introduces a new social aspect, organizational dynamics.

In summary, our findings are presented in three ways: (i) confirmed; (ii)
controversial, and (iii) new results. As confirmed results, we had that:

– Different social metrics work as indicators of design change in different
contexts, confirming results from the original work.

– Number of Users, Meant Time Between Comments, and Discussion
Length carried on their relevance as design decay indicators

– The discussion content metrics Number of Words in Discussion and
Number of Words Per Comment in Discussion stood out as the best
social metrics to identify design decay;

– When analyzing multiple social aspects and multiple projects at the same
time, different social metrics emerge as indicators of both increase and
decrease of design decay symptoms. For instance, the Team Size, Time
Between Creation and First Comment, and Time Between Last Comment
and Merge presented themselves as statistically significant in the model
with all aspects and all projects.

However, our controversial results showed:

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 56

– Number of Core Developers, and the Opened By metrics presented a risk
of increasing the design decay symptoms in this study.

Finally, as new results, we observed:

– Number of Refactoring Keywords and Refactoring Keyword Density
presented promising results in relation to design decay symptoms;

– The presence of newcomers and the number of developers leaving the
organization showed their importance in the impact on the design of the
system;

– Gender Diversity did not present any relation to design decay, which is
an interesting finding for gender studies.

– The organizational dynamics aspect showed promising result to indicate
the decrease of design decay symptoms.

The remainder of this paper is organized as follows. Section 4.2 discusses
the background and related work. Section 4.3 describes the study design.
Our results are discussed in Section 4.4. The Threats to Validity and their
mitigation are presented on Section 4.5, and Section 4.6 concludes our paper
and presents future work.

4.2
Background and Related Work

Social aspects in software development. Multiple studies have
analyzed the importance of social aspects in the software development process.
Tamburri et al [69], for instance, collected social metrics to characterize
and compute “social debt”, they aimed at observing how social problems
can directly affect decision-making in software development. They concluded
that social debt lead to more error-prone decisions. Tamburri et al. [70] also
performed a study about social aspects in industrial projects and provided
the definition of common problems that can occur, together with potential
mitigation to these problems. The main differences between these studies and
our work are that they focus on how the social aspects of software engineering
can cause on external software problems. Our work quite diverges from it by
understanding how social aspects can cause decay-related problems that are
internal to the software.

Social aspects versus software quality. When looking at the rela-
tionship between social aspects and software quality, Betternburg et al. [9]
studied how social aspects can affect the quality of released software. The au-
thors found out a set of aspects that had a statistically significant connection

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 57

to defects: (i) low code churn (which was used as the baseline); (ii) low num-
ber of external resources (links); and (iii) high variance of the time between
comments in the discussions. Nagappan et al. [45] analyzed the relationship
between organizational structure metrics and software quality. They concluded
that a machine learning model trained with organizational structure metrics,
e.g., % of organizational contributing to development, and level of code own-
ership, was more effective at predicting software quality loss than a model
trained with technical code metrics, e.g., code churn, code complexity. Our
work differs from these other two because we combine both organizational and
social metrics, and we also analyze a much wider suite of metrics – which does
not require direct access to the developers themselves, and can be mined from
repositories.

Social aspects of quality improvement. In terms of the social aspects
of software quality improvement, we can find the presence of self-affirmed
refactorings. AlOmar et al. [2] performed a study of how refactorings can
be detected not in the code changes, but also through the social discussions
between developers. Along with this, Soares et al. [64] performed a study
to understand the relationship between such self-affirmed refactorings and
the improvements to the code, showing that developers do tend to discuss
refactorings when they are performing more complex changes. Our work differs
from these other two due to the difference in context. In our work, we analyzed
how the presence of this social aspect, in refactoring situations, relates to the
improvement of decay.

4.3
Study Design

Section 4.3.1 introduces our study goal and research questions. Finally,
Section 4.3.2 describes the study steps and procedures.

4.3.1
Goal and Research Questions

The goal of our study is to replicate the study of Barbosa et al. [6], as
well as possibly confirm, refute or refine their findings. Their work investigated
to what extent the social aspects influence design decay. To this end, they
analyzed social metrics in commits of pull requests – specifically, the metrics
on communication dynamics and discussion content dimensions. They analyzed
11k pull requests on five open-source projects. We are considering all the three
research questions of the preliminary study and complementing with a new

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 58

question. All the four questions are described below with their corresponding
explanation.

Our goal is to perform an in-depth analysis on the influence of social
aspects on design decay symptoms, as already assessed in Barbosa et al [6].
We introduce the RQs as follows:

RQ1: Are social metrics related to design decay? – As aforementioned,
this RQ mirrors RQ1 from the preliminary work. Their approach to answer
this RQ was to investigate if there was a statistically significant difference
between social aspects and impactful/unimpactful pull requests. They did so
by analyzing 11k pull requests, extracted from five open-source projects hosted
on GitHub. Their definition of an Impactful Pull Request was a pull request
in which an increase or decrease in design decay was observed as a result of
merging the pull request. Conversely, an Unimpactful Pull Request was one in
which their merging did not affect the design decay. However, the size of their
dataset and the number of analysed metrics could somehow obfuscate their
findings. To find this statistical significance, they applied the Wilcoxon Rank
Sum Test [80]. Further details are described in Section 4.3.2, Step 6.

RQ2: To what extent do the communication dynamics influence design
decay? and RQ3: To what extent do the discussion content influence design
decay? In order to address RQ2 and RQ3, we also went beyond the preliminary
study. We derived and assessed two additional metrics in the communication
dynamics dimension, and four new metrics in the discussion content dimension
for this analysis. These additions enable us to achieve a deeper understanding
of these aspects, as we also increased the number of projects. Finally, we applied
the Bonferroni correction to the p-values [39] in order to decrease the number
of type I errors. Since the multiple logistic regression runs the model N x N
times, being N the number of metrics, this models often have statistical errors
that spread over the p-values. This correction is able to minimize this error
spreading.

RQ4: To what extent do the organizational dynamics influence design
decay? – This RQ expands on the analysis performed by the previous work [6].
By applying the same methodology for RQ2 and RQ3, we investigate if any of a
set of multiple social metrics related to the organizational dynamics dimension
relate to design decay. Our motivation is to further investigate other social
aspect, so that organizations can have a more holistic view of the importance
of certain aspects of their team in collaborative coding communities.

Our final goal is to provide a set of metrics that can be used. Being
produced in the context of social aspects monitored along discussions in
pull requests. Monitoring social metrics in this context can early to indicate

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 59

the increase or the decrease of design decay symptoms before changes are
submitted and merged into the main branch. By doing this, we can shed light
on future work on social aspects, and design decay, for software communities,
so they can monitor their social behaviors in order to decrease the quality of
the software being produced.

4.3.2
Study Steps and Procedures

In this section, we will describe our study steps. First, we follow the same
steps of Barbosa et al [6], and then complement them with other steps.

Step 1: Selecting open-source systems. In this step, we first follow
the criteria defined by Barbosa et al [6], which are: (i) systems that use pull
request reviews as a mechanism to receive and evaluate code contributions; (ii)
systems that have at least 1k commits and pull requests; and (iii) systems that
are at least 5 years old, and are currently active. These criteria were selected by
them in order to avoid known perils [31] of mining software repositories. Finally,
the focus on Java systems was due to the constraints of the DesigniteJava
tool [60]. As an addition to this step, we choose two more projects to be added
to our study: ExoPlayer and Spring Security. This amount of new projects
is justified by the high memory and storage cost of the data through the
extraction with the DesigniteJava [60] and the GitHub API. For instance,
ExoPlayer needed a computer with 85 GBs of RAM and 1,5 TB of storage to
fully support the execution of the tool. Moreover, its run time was of 2 weeks.
Thus, this is the main limitation imposed on the number of projects that we
could add. It also explains why the preliminary work kept their number at
five only. Table 4.1 provides details about each selected system. The columns
respectively show: the names of each selected system; system’s domain; number
of commits; number of pull-requests; and time period considered in this study.

Table 4.1: Software systems investigated in this study
System Domain # Commits # Pull-requests Time span
Elasticsearch Search Engine 17,251 4598 2011-2018
Presto Query Engine 1958 1542 2012-2019
Netty Framework for Network 4071 147 2011-2019
OkHttp HTTP client 9690 4013 2012-2018
RxJava Android Library 4140 1299 2013-2019
ExoPlayer Music Player 10688 959 2014-2020
Spring Security Security Library 9225 1536 2004-2020

Step 2: Detecting multiple design decay symptoms. In this
step, we applied the same methodology of the original work, complemented
by a validation using self-affirmed refactorings (see Step 5). We used the
DesigniteJava tool [60] to detect the same 27 decay symptoms types – 17

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 60

high-level structural smells, and 10 low-level structural smells (see Table 4.2).
Moreover, we only considered commits from merged pull requests. For each
pull request PRi, we downloaded a snapshot of each commit Ci that has been
part of PRi. Next, we calculated the difference between Ci and Ci−1 in order
to guarantee that the introduced design symptoms belonged only to Ci. By
doing this, we avoid the rebase effect [51, 52], due to such a pull request
being the only potential point in time in which the code could be changed.
The descriptions, detection strategies, and thresholds for each symptom are
available in our replication package [7].

Table 4.2: Degradation symptoms investigated in this study
High-level symptoms
Imperative Abstraction, Multifaceted Abstraction, Unutilized Abstraction,
Unnecessary Abstraction, Deficient Encapsulation, Unexploited Encapsulation,
Broken Modularization, Insufficient Modularization, Hub Like Modularization,
Cyclic Dependent Modularization, Rebellious Hierarchy, Wide Hierarchy,
Deep Hierarchy, Multipath Hierarchy, Cyclic Hierarchy, Missing Hierarchy,
Broken Hierarchy [61].
Low-level symptoms
Abstract Function Call From Constructor, Complex Conditional, Complex Method,
Empty Catch Block, Long Identifier, Long Method, Long Parameter List,
Long Statement, Magic Number, Missing Default [61].

Step 3: Computing design decay indicators in terms of density
symptoms. We first relied on similar steps as those from Barbosa et al [6],
selecting the density and diversity of symptoms as indicators of progressive
design decay. This decision is also grounded on decisions and observations
made in previous studies [66, 48, 50, 77, 86]. In summary, a positive difference
in the density (or diversity) of symptoms indicates an increase of the design
decay as a result of the merged pull request. Therefore, it represents a design
worsening. Similarly, a negative difference in the density of symptoms indicates
a decrease of the design decay as a result of the merged pull request. Finally,
a difference equal to zero in the density of symptoms indicates that there has
been no harmful design structure change. This difference is calculated by the
following methodology. For each commit Ci of the dataset, the tool generates
code smell data for Ci and Ci−1, where Ci−1 represents the parent commit of
Ci, to compare the smells present on both commits. By doing that, they can
see how many smells were added or removed, resulting in the calculation of
density and the diversity. In total, we have computed the four indicators, i.e.,
density and diversity for high and low-level decay symptoms. A total of 11,599
merged pull requests were considered. We provide all computed indicators in
our replication package [7].

Step 4: Detecting self-affirmed refactorings.We apply the empirical
framework of AlOmar et al [3] to extract the self-affirmed refactorings (SAR)
from the messages of pull request commits. The SAR is a confirmation, made

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 61

by the developers themselves, that they have performed a refactoring and, thus,
that the code design should have to be structurally improved. This framework
uses a model based on Azure Machine Learning [44], which was built upon a
dataset containing commit messages of over three thousand projects. It is a
single-class model that determines if a commit message contains a SAR, or if
it does not. With this algorithm, the authors were able to achieve an accuracy
of 98%.

Step 5: Calculating control metrics and social aspects. The work
of Barbosa et al [6] computed 11 metrics related to social aspects. In order to
increase the number of social aspects we want to analyze, we added 11 new
metrics to this step. The computation of these metrics was performed using in
the same three steps performed in the preliminary work: (i) collect the issues,
pull requests, and related commits and comments from the selected projects
through the GitHub API; (ii) extract the information needed for calculating
the metrics from the collected data, and (iii) calculate the metrics following
the methodology of each metric. Tables 4.4, 4.5 and 4.6 show both the 11
original metrics and the new 11 ones, totalling the 22 metrics we have used
to measure social aspects affecting and interfering with the code development
artifacts. Table 4.3 shows the control variables, which we computed in order
to avoid factors that may affect our outcome, if not adequately controlled.
For this end, we used product and process metrics, which have been shown by
previous research to be correlated with design decay [54, 33]. Tables 4.4, 4.5
and 4.6 describe the metrics that we considered as independent variables
to measure certain social aspects. We have grouped each metric in one
of three categories, each one representing a dimension of a social aspect.
Communication dynamics represents the dynamic of the discussion activity,
such as the role of participants involved in a discussion or temporal aspects
of the messages. Discussion content represents the interaction of developers
during the exchange of messages, and information about the content of each
message, such as, the number of snippets written in a discussion. Finally,
Organizational dynamics represents the aspects of the team as a whole, such
as the size of the team in the time of a discussion.

Step 6: Assessing the relationship between social aspects and
impactful pull requests. We use the same statistical approach to determine
which social metrics are able to discriminate between impactful and unim-
pactful pull requests, much like the original work. We also observe that the
social metrics are not normally distributed [39]. Thus, we use the Wilcoxon
Rank Sum Test [80] to decide whether a social metric is statistically different
for impactful pull requests, when compared to the unimpactful ones. The test

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 62

Table 4.3: Control Variables
Type Metrics Description Rationale

Patch Size Number of files being subject
of review.

Large patches can be more
prone to be analyzed for how
the involved classes are de-
signed.

Diff Size Difference of the sum of the
Lines of Code metric computed
on version before and after re-
view of all classes being subject
of review

Large classes are hard to main-
tain and can be more prone to
be refactoring [53]Product

Diff Complexity Difference of the sum of the
Weighted Method per Class
metric computed on the ver-
sion before and after review of
all classes being subject of re-
view.

Classes with high complexity
are potential candidates to be
refactored

Process Patch Churn Sum of the lines added and
removed in all the classes being
subject to review.

Large classes are hard to main-
tain and can be more prone to
be subject to refactoring.

was conducted using the customary .05 significance level. Furthermore, we also
used the Cliff’s Delta (d) measure [24] in RQ1 as a means to evaluate how
strong is the difference between impactful and unimpactful pull requests, in
terms of the analysed metrics. Similarly to the Wilcoxon Rank Sum test, the
Cliff’s Delta (d) is a non-parametric effect size measure. We employed a well-
known classification [58] in order to interpret the Cliff’s Delta (d) effect size.
It defines four categories of magnitude: negligible, small, medium, and large.

Step 7: Evaluating the influence of multiple social aspects on
design decay. We assess the influence of each social aspect over the design
decay. For this purpose, we rely on a multiple logistic regression model created
by Barbosa et al [6] for each aspect. In this model, we analyze each group of
social aspects separately. Moreover, the multiple logistic regression calculates
the odds ratio using each metric in the presence of each one other. All the
social aspects and their related metrics presented in Tables 4.4, 4.5 and 4.6 are
used as predictors in the model, and the outcome variable is whether or not
there was decay on the design symptoms related to the merged pull request.
We choose a multiple logistic regression approach due to the fact that we are
studying the effect of multiple predictors (i.e., the metrics) in a binary response
variable. We removed the metrics that have a pair-wise correlation coefficient
above 0.7 [14] from our models to avoid the effects of multicollinearity. We also
applied the Bonferroni [39] correction on the p-values to assure their validity.

To measure the relative impact, we aim at understanding the magnitude
of the effect of the metrics over the possibility of a merged pull request on
degrading the system design. To this end, we estimate the relative impact using
the odds ratio [15]. Odds ratios represent the increase or decrease in the odds
of an event happening. In our case, we measure the odds of the merge of a pull
request degrading the system occurring per “unit” value of a predictor (metric).

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 63

An odds ratio below 1 indicates a decrease in these odds (i.e., a risk-decreasing
effect), while above 1 indicates an increase (i.e., a risk-increasing effect). Since
most of our metrics presented a heavy skew, we needed to reduce them. To
do so, we applied a log2 transformation on the right-skewed predictors, and a
x3 transformation on the left-skewed. Moreover, we normalized the continuous
predictors in the model to provide normality. As a result, the mean of each
predictor is equaled to zero, and the standard deviation to one. To ensure the
statistical significance of the predictors, we employ the customary p-value <
.05 for each predictor in the regression models.

Table 4.4: Communication Dynamics Dimension
Metrics Description Rationale
Number of Users Number of unique users that interacted in

any way in a discussion inside a pull re-
quest (either opened, commented, merged
or closed)

Number of Contribu-
tors

Number of unique contributors that inter-
acted in any way in a pull request (either
opened, commented, merged or closed)

These three metrics allows us to identify dis-
cussions with the presence of common users,
constant contributors, experienced developers
or core members of the project

Number of Core Devel-
opers

Number of unique core developers that
interacted in any way in a pull request
(opened, commented, merged or closed)

Pull Request Opened
By

The type of user that has opened each is-
sue or pull requests. The user might be
an Employee or Temporary. Employees are
active contributors and code developers.
Conversely, temporary users are contrib-
utors that do not actively work on the
project or does not work for the software
organization

Issues or pull requests opened by temporaries
have more risk of degrading the code

Number of Comments Number of comments inside a Pull Re-
quest.

Discussions with a high number of comments
around a code change would find possible de-
sign problems, improving or maintaining the
quality

Mean Time Between
Comments

Sum of the time between all comments of
a pull request weighted by the number of
comments.

A higher time between comments (e.g., a long
pause in an otherwise fast-paced discussion)
are related to code decay

Discussion Duration
(Discussion Length)

Time in days that a pull request lasted
(difference of creation and closing days).

The longer is the discussion, the higher the
chance of problems being explained and solved,
avoiding code decay

Time Between Opened
and First Comment

Time in days between the pull request
opening and the first comment on that pull
request

The longer the time between the opening and
the first comment, the higher the chance of
the developer do not really engage on solving
possible problems, leading to design decay

Time Between Last
Comment and Merge

Time in days between the last comment
on the pull request and the pull request
closing

The longer the time between the last comment
and closing of the pull request, the higher the
chance of the author does not engage on new
minor changes, leading to design decay.

4.4
Results and Discussion

We will focus our discussion on contrasting the results of this replication
study with those of the previous study (Chapter 3). Thus, we will present our
findings in three different ways: (i) confirmed observations: those discussions
concerning the findings from the original study that ware also observed in this
replication; (ii) controversial observations: discussions about the findings from

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 64

Table 4.5: Discussion Content Dimension
Metrics Description Rationale
Number of Snippets in
Discussion

The number of snippets inside each com-
ment of a pull requests. Those snippets are
detected by the number of ”’ (syntax that
opens a snippet in markdown) divided by
two (opening and closing)

The higher the number of snip-
pets in a discussion, the clearer
the users are trying to pass
a message. Therefore, avoiding
confusion and possibly code
decay

Snippet Size Sum of the size of all snippets found on
comments in a pull request

The bigger the size of snippets
in a discussion, the clearer the
users are trying to pass a mes-
sage. Therefore, avoiding con-
fusion and possibly code decay

Mean Snippet Size Snippet Size weighted by the number of
snippets

The higher the mean of snip-
pets in a discussion, the clearer
the users are trying to pass
a message. Therefore, avoiding
confusion and possibly code
decay

Number of Words in
Discussion

Sum of the all words of each comment in-
side a pull request. Here we applied the
preprocessing in the text removing con-
tractions, stop words, punctuation, and re-
placing numbers

Discussions with a high num-
ber of words are related to
more complex changes, that
may lead to code decay

Number of Words per
Comment in Discus-
sion

Sum of the all words of each comment in-
side a pull request weighted by the num-
ber of comments. Here we applied the pre-
processing in the text removing contrac-
tions, stop words, punctuation, and replac-
ing numbers

Discussions with a high
weighted number of words
are related to more complex
changes, that may lead to code
decay

Number of Design Key-
words

Sum of the all words of each comment in-
side a pull request that contains a keyword
from the following list: design, architect,
dependenc, requir, interface, servic, arti-
fact, document, behavior, modul

Changes with design keywords
may show that developers were
concerned about design

Number of Refactoring
Keywords

Sum of the all words of each comment in-
side a pull request that contains a key-
word from the following list: refactor, mov,
split, fix, introduc, decompos, reorganiz,
extract, merg, renam, chang, restructur,
reformat, extend, remov, replac, rewrit,
simplif, creat, improv, add, modif, enhanc,
rework, inlin, redesign, cleanup, reduc, en-
capsulat

Changes with refactoring key-
words may show that develop-
ers were concerned about de-
sign

Density of design com-
ments

Mean of ’design’ keyword per comments The higher the mean of ’de-
sign’ comments, the smaller
the chances of design decay

Density of refactoring
comments

Mean of ’refactoring’ keyword per com-
ments

The higher the mean of ’refac-
toring’ comments, the smaller
the chances of design decay

Table 4.6: Organizational Dynamics Dimension
Metrics Description Rationale
Team Size Number of Active Developers on the past

90 days
A bigger amount of active
developers can engage more
the community on discussions,
avoiding design decay

Gender Proportion of male/female contributors on
the team

Gender diversity on a team
leads to better team perfor-
mance. Thus, avoiding design
decay

Number of Newcomers Number of new contributors on the past 90
days

A bigger amount of newcom-
ers can introduce less experi-
ence on the changes, leading to
design decay

Number of Developers
Leaving

Number of developers that previously con-
tributed to the project but did not con-
tribute on the past 90 days

More developers leaving can
decrease the engagement of the
community, leading to design
decay

the original study that were not observed here or had their behavior inverted;
and (iii) new observations: new findings only derived in this replication study.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 65

4.4.1
Social Metrics and Impactful Pull Requests

We report the results of our analysis replicating the methodology defined
in the original work [6]. In this RQ1 we aimed to confirm if the original
work’s social metrics can discriminate between impactful pull requests and
unimpactful pull requests. Moreover, we also evaluated new social metrics
implemented in this study. As described in Step 3 of Section 4.3.2, we consider
that a merged pull request is impactful when it increases or decreases the
design decay. Conversely, unimpactful pull requests do not affect the design
decay.

Table 4.7 shows the results of our analysis. The first column represents
the social metrics, while the remaining ones describe the metrics and their
respective magnitudes of the Cliff’s Delta related to each studied project. In
addition, we use the (+) symbol to indicate if d was positive, and the symbol
(−) otherwise. In addition, we use four levels to measure the strength of a
magnitude: (small) *; (medium) **; (large) ***; and (negligible) We do not
use a symbol to represent this last level. The cells in gray represent the p-values
of the metrics that obtained statistical significance in the Wilcoxon Rank Sum
test.

The relationship with impactful pull requests.We observe that the
process and product metrics behaved as expected, being statistically significant
in 28 out of the 30 cases, resulting in medium and large strength level in 21
cases. Concerning the social metrics, we can see that this replication, using a
restrict approach, made most of social metrics lose their statistic significance.
The only two projects has now show significance were Elasticsearch and Presto
projects. We observed that 19 out of 23 cases (Elasticsearch) and 9 out
of 23 cases (Presto) were significant in these projects. However, the higher
magnitude was ”small” on 6 cases. Nevertheless, three to four new metrics
showed themselves as significant in these projects, as some others from the
original work also kept as they were. Finally, the two new projects, namely
ExoPlayer and Spring-boot; showed the worst behavior with social metrics,
having only two significant cases on the former and none on the latter.

Finding 1: The original social metrics kept their behavior observed in the
original work, while others weakened with our stricter methodology used in
this replication. The metrics from the organizational dynamics showed to
be promising in 6 out of 7 projects, meaning that can be more consistently
used to differentiate impactful and unimpactful pull requests.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 66

Table 4.7: Statistical Significance (p-value) of the Wilcoxon Rank Sum Test
and the Cliff’s Delta (d) Magnitude Classification

Metric Elastic ExoPlayer Netty OkHTTP Presto RxJava Spring Security
PS (+) ** (+) * (+) *** (+) ** (+) *** (+) *** (+) ***
PC (+) ** (+) ** (+) *** (+) *** (+) *** (+) *** (+) ***
DC (+) * (+) (+) *** (+) * (+) ** (+) ** (+) ***
DS (+) * (+) (+) *** (+) (+) ** (+) ** (+) ***

Comments (+) * (−) (+) * (+) * (+) * (+) (−) *
Users (+) (+) (+) (+) (+) (+) (+)

Contributors (+) (−) (−) (+) * (+) (+) (−)
Core Devs (+) (−) (+) (+) (+) (+) (−) *
Employees (−) (+) (−) (+) (+) (−) (−)
OBTemp (+) (−) (+) (+) (−) (+) (+)
MTBC (+) (−) (+) * (+) (+) * (+) (−)
DL (+) * (−) * (+) * (+) (+) * (+) (−)
TBF (+) (−) (−) (+) (+) * (−) (−) *
TBL (+) (−) (+) (+) (+) (+) (−) *

Patches (+) (+) (+) (+) (+) (+) (−)
Words (+) * (+) (+) * (+) * (+) * (+) (−)

Words/Comment (+) * (+) (+) * (+) * (+) * (+) (−)
Snippet Size (+) (+) (+) (+) (+) (+) (+)

Design (+) (+) (+) (+) (+) (+) (+)
Refactoring (+) * (+) (+) (+) (+) * (+) (−)

Design Density (+) (+) (+) (+) (+) (+) (+)
Ref. Density (+) * (+) (+) (+) (+) (+) (−) *
Team Size (−) (−) * (−) ** (−) (−) (−) (−)

Male Devs (+) * (−) (+) * (+) * (+) (+) (−)
Female Devs (+) (−) (+) (−) (+) NA (+)
Newcomers (+) (−) * (−) ** (−) (−) (−) (−)
Leaving Devs (−) (−) * (−) ** (−) (+) (−) (−) *

4.4.2
Communication Dynamics and Decay

The results of this analysis are summarized in Table 4.8. Each row
contains the results of the metrics for each project. The last row contains the
results for the data of all projects combined. Moreover, the grey cells represent
the statistically significant metrics (p-value < .05) and the arrows represent
the following behavior: risk-increasing (arrow up) and risk-decreasing (arrow
down). Finally, the blank cells represent metrics that were removed from the
model for being collinear. We discuss the results as follows.

Table 4.8: Results of the odds ratio analysis for the communication dynamics
Control Variables Communication Dynamics AspectSystem PS PC DC DS # Comments # Users # Contributors # Core Devs # Employees OBTemp MTBC DL TBCFC TBLCM

elasticsearch 1,081 2.179 ↑ 1.059 1.001 1.046 1.051 1,32 ↑ 1.062 1.23 ↑ 0.963
netty 26.082 ↑ 1.563 0.698 0.681 0.61 1.756 1.286 0.599 1.221
okhttp 8.506 ↑ 0.522 ↓ 0.804 1.118 1.243 1.037 0.967 1.078 1.109 0.942
presto 5.561 ↑ 1.179 ↑ 0.849 ↓ 0.958 0.862 1.052 1.082 1.01
rxjava 2.273 ↑ 0.941 1.124 0.958 0.997 1.231 0.96 0.926
security 2.603 0.408 1.156 2.056 1.091 1.704 1.074 0.669
exoplayer 2.826 ↑ 0.542 ↓ 1.195 1.377 0.256 1.181 1.28 0.587 1.081 0.592
all 3.724 ↑ 0.905 1.03 1.072 1.145 ↑ 0.947 1.135 ↑ 1.108 ↑ 1.013

Confirmed observations. In the original study, Number of Users (#
Users), Mean Time between Comments (MTBC), and Discussion Length
(DL) presented a statistically significant increase in the risk of decay. In this
replication, # Users continued its risk-increasing tendency in most projects.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 67

However, we only observed a statistically significant result for the Presto
project. Thus, we manually analyzed a sub-set of pull requests from the Presto
project to better understand its result.

Based on the aforementioned analysis, we identified some scenarios that
may explain the risk-increasing tendency. First, we observed that pull requests
involving controversial changes tend to also involve a higher number of users.
In some cases, the controversy was related to the impact on design quality,
which helps to explain the risk-increasing tendency. We observed this scenario,
for example, in the pull request #113022 of Presto. This pull request involved
44 participants (including one bot) and ended up not being merged.

The Mean Time between Comments (MTBC) metric was statistically
significant on only three projects in the preliminary study – Netty, OkHttp, and
when we combined all data. In this study, this behavior was just preserved only
when we combined all data. Finally, the Discussion Length (DL) metric showed
a bigger risk-increasing tendency in this replication: from only the Netty
project to Elasticsearch and all data combined. These results are expected
as we believe that when a discussion is sparse and the reviewers take long time
to reply, the developer may lose motivation to properly solve some problems.

Finding 2: Discussions that take long time or that its comments are very
sparse are related to the increase of design decay symptoms.

Controversial observations. Differently from the previous study, in
this replication, the Number of Core Developers (# Core Devs) and Opened
By Temporary (OBTemp) metrics presented a statistically significant risk-
increasing tendency. First, # Core Devs when combining data from all projects.
The OBTEMP was not significant in the past study. However, this result is
expected, due the fact that temporary developers are often less experient on
the code being developed. Moreover, the Number of Core Devs is a surprising
result, but looking to our data, we see that most cases with decrease of
degradation of symptoms there were no core developers acting in the pull
request. However, these cases happened in early stages of the project in which
the core developers are also usually doing development work and leave the
contributors work more freely. This situation also explains the behavior of the
Number of Contributors metric, which presented a risk-decreasing tendency
on the Presto project.

2https://github.com/prestodb/presto/pull/11302

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 68

Finding 3: Pull requests opened by temporary developers have a higher
chance of design decay. However, when these temporary users become
contributors, a higher number of contributors in a pull request decreases
the change of decay.

New observations. In this replication, we also introduced two new
communication dynamics metrics: Time Between Creation and First Comment
(TBCFC) and Time Between Last Comment and Merge (TBLCM). Neverthe-
less, we could not observe statistically significant results for any of the cases.
Moreover, the tendency for both of them was not homogeneous across the dif-
ferent projects. Finally, we also observed multiple cases of collinearity, specially
for the TBLCM metric.

4.4.3
Discussion Content and Decay

By following the same procedures of the previous research question, in
RQ3 we aim to understand the influence of the discussion content over the
design decay. The results of this analysis are summarized in Table 4.9, in
which we also used the odds ratio technique to explain the effect of this social
aspect over the design decay. Similarly to Table 4.8, the grey cells represent the
statistically significant metrics (p-value < .05), and the arrows represent the
risk-increasing (arrow up) and risk-decreasing (arrow down) effects. Finally,
the blank cells are the metrics missing due to collinearity.

Table 4.9: Results of the odds ratio analysis for the discussion content
Control Variables Discussion Content AspectSystem PS PC DC DS # Snippets # Words # Words per Comment Snippet Size Design Refactoring Design Density Ref. Density

elasticsearch 2.97 ↑ 0.65 ↓ 0.634 1.046 1.594 7.98 ↑ 1.072 0.142 ↓
netty 8.029 ↑ 0.93 12.599 1.363 1.029
okhttp 0.614 ↓ 10.074 ↑ 2.925 0.998 0.353 0.991 1.019
presto 5.7 ↑ 1.409 0,838 ↓ 0.737 2.47 1.006 0.447
rxjava 2.263 ↑ 0.143 0,775 ↓ 6.796 35.494 ↑ 1.045 0.036 ↓
security 3.544 ↑ 0.894 441.727 0.964 0.001
exoplayer 2.705 ↑ 0.591 ↓ 1.03 0.915 1.19
all 2.387 ↑ 0.977 12.503 ↑ 0.088 ↓ 1.006 1.43 0.916 0.727 1.119

Confirmed observations. By performing a closest comparison of our
results with that obtained by Barbosa et al [6], we observed that the met-
rics Number of Words per Comment in Discussion (NWPCD) and Number
of Words in Discussion (NWD) remained statistically significant. More specif-
ically, the metric NWPCD presented statistically significant for the Presto
system and remained statistically significant for the RxJava system, and when
we combine the data of all systems. In the case of the metric NWD, it remained
statistically significant only when we for all the data combined. In addition, in
this replication, both metrics NWD and NWPCD remained their risk tendency
effect on design decay, risk-increasing, and risk-decreasing effect, respectively.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 69

To exemplify the metric NWPCD, we can observe the pull request #1409
from the RxJava project. The goal of this pull request was to ”Avoiding
OperatorObserveOn from calling subscriber.onNext(..)”. This pull request
involved three developers and one bot. The discussion on this pull request
presented 26 comments, with an NWPCD of 9, indicating a high number of
words scattered across comments. In addition, such comments were all made by
the three developers involved in this pull request, indicating a high engagement
of the developers in providing useful pieces of information to reduce the design
decay in the system. Conversely, as mentioned by [6] and observed in the pull
request #1388 from the OkHttp project, the metric NWD indicate an increase
on design decay when a discussion has a high number of comments and a
high number of words, however, these words are concentrated only in a few
comments.

Finding 4: Our results confirm the main findings of Barbosa et al [6] with
respect to the influence of discussion content on design decay. Discussions
with a high number of words, when it is not accompanied by a high number
of words per comment, work as indicators of design decay increase.

Controversial and new observations.We did not observe any contro-
versial results in this matter compared to the original work. By addicting four
new metrics, Number of Design Keywords (NDK), Number of Refactoring Key-
words (NRK), the density of design comments (Design Density), and Density
of Refactoring Keywords (Ref. Density), in the discussion content dimension,
new observations have emerged. In this case, one out of two metrics related to
the presence of a specific keyword on the title or comments of pull requests,
i.e., NRK, has a risk-increasing tendency. Moreover, the metric NRK was sta-
tistically significant for the Elasticsearch and RxJava systems. Regarding the
two metrics related to the density of specific keywords per comment, only
the metric Density of Refactoring Keywords has presented a risk-decreasing
tendency.

In other words, the metric NDK indicated that the higher changes that
contain the ’refactoring’ keyword, the bigger would be the risk of design decay.
However, the metric Density of Refactoring Keywords shows us that the higher
the mean of ’refactoring’ comments, the smaller the chances of design decay.
Moreover, these two metrics do not conflict, but they are complementary as
indicators of design decay. We observed that the metric NRK may indicate
an increase in design decay when: (1) the developers are implementing a new
feature or enhancing an existing feature; and (2) due to the overload of the
”refactoring” term, which is also a common reason for indicating any structural

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 70

change, in this sense, the developers may claim a refactoring was being made
when the change actually consisted of a feature improvement.

To exemplify the cases, we observe the pull request #797 from the RxJava
project, regarding the case (1) aforementioned. The goal of this pull request
was to ”Scheduler Outer/Inner”, more specifically, the developer was intended
”to simplify scheduling and make it easier to do the right thing”. Regarding
case (2) we can observe in the pull request #2928 from the RxJava project,
that the refactoring term was applied to indicate a feature improvement: ”It
seems the merge is quite sensitive to method structuring: just by refactoring
the scalar emission path I got some notable performance back [...]”

Finding 5: We found that discussions with a high number of refactoring
keywords, but when not weighted by the number of comments, has a higher
risk of design decay. This behavior is seen also in the NWD and NWPCD
metrics.

4.4.4
Organizational Dynamics and Decay

Besides investigating communication dynamics and discussion content,
we also analyzed the impact of organization dynamics on design decay in
this replication. Table 4.10 shows the results for four organization dynamics
metrics, namely Team Size, Gender (which is divided on Number of Male
Developers (# Male Devs) and Number of Female Developers (# Female
Devs)), Number of Newcomers (# Newcomers), and Number of Leaving
Developers (# Leaving Devs).

Team size and gender not related to design decay. Regarding team
size, it is possible to observe in Table 4.10 that collinearity affected all cases
(blank cells), meaning that this metric is behaving in the same way as the
another, so we may not be certain about its use for predicting design decay.
Moreover, we also observed that gender seems not to be suitable for predicting
design decay. Such a result is explained by the fact that most contributors
gender that could be easily recognizable are male (95%). In fact, gender has
been recognized as a barrier for the computer science field [29]. As a result,
the majority of contributors are male or prefer to not reveal their gender.

Finding 6: The Team Size did not show any relation to design decay, as
well the Gender Diversity.

Number of newcomers as a risk-decreasing metric. Contrary to
the expectation, we observed that the # Newcomers metric may be related

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 71

to reduction of design decay. Results for Elasticsearch, Netty, RxJava, and a
combination of all projects showed a risk-decreasing tendency. This means
that the higher the number of newcomers the smaller is the incidence of
design decay. Moreover, Elasticsearch was the only project that presented a
statistically significant result.

We conjecture that the risk-decreasing tendency can be explained by
the fact that a higher number of newcomers results in a higher number of
contributors. Thus, with more contributors, the workload of the project can
be better distributed. This may help each contributor to perform high-quality
work, both in development and code review tasks. Another factor related to
newcomers is the fact that they often face several barriers before starting
to contribute [67]. Therefore, we believe that only newcomers who are able
to devote more effort and time to the project manager become contributors,
which may result in higher design quality. Finally, we also believe that core
developers end up reviewing newcomers’ contributions with higher attention
and with stricter criteria. As a result, only pull requests of high quality and
relevance produced by newcomers are accepted in the projects.

Finding 7: Surprisingly, the number of newcomers that performing code
changes do not lead to a risk-increasing effect on design decay.

Positive impact of number of leaving developers. Another surpris-
ing result was regarding the # Leaving Devs metric. We observed a statistically
significant risk-decreasing tendency in three projects: Elasticsearch, Presto,
and ExoPlayer. This result is surprising because it indicates that the higher
the number of developers leaving the project, the lower the incidence of design
decay. We conjecture that a high rate of developers leaving the project means
that the project usually receives contributions from diverse people, even if for
short periods. Such a diversity of contributions can be beneficial in maintaining
the quality of the design.

Finding 8: When we see a high number of developers leaving the organi-
zation, we also observe an decrease in the design decay symptoms.

In summary, in this section we discussed the impact of organizational
dynamics on the incidence of design decay. We were able to identify two metrics
(# Newcomers and # Leaving Devs) that can help to predict future design
problems. Nevertheless, such metrics should be further investigated through
more quantitative and qualitative analyses in order to better understand
whether and why they are relevant to design quality.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 72

Table 4.10: Results of the odds ratio analysis for the organizational dynamics
Control Variables Organizational Dynamics AspectSystem PS PC DC DS Team Size # Male Devs # Female Devs # Newcomers # Leaving Devs

elasticsearch 3.195↑ 0.623 ↓ 1.096 0.864 ↓ 0.837 ↓
netty 13.885 ↑ 1.155 0.382 0.424
okhttp 8.461 ↑ 0.527 ↓ 1.024 1.039 0.89
presto 2.292 ↑ 1.033 0.907↓
rxjava 11.337 ↑ 1.039 0.808 0.91
security 2.484 0.55 0.358
exoplayer 2.578 ↑ 0.558 ↓ 0.747 0.638↓
all 3.92 ↑ 1.058 0.941 1.026

4.4.5
All Metrics and Aspects

Since the original work did this analysis, in order to understand if
different factors would emerge from different situations, we also think this
replication needs to address them as well. Table 4.11 shows the results of the
Multiple Logistic Regression when we combined all projects data and analyzed
all social aspects in only one model.

Table 4.11: Results of the odds ratio analysis with all social aspects together
for all project data

Metrics
Control variables
Patch Size
Diff Size
Diff Complexity
Patch Churn 1.233↑
Communication Dynamics
Number of Users 1.061
Number of Contributors 0.917
Number of Core Developers 0.968
Opened By: Temporaries 0.966
Number of Comments
Mean Time Between Comments
Discussion Duration 1.286↑
Time Between Opened and First Comment 1.097↑
Time Between Last Comment and Closing 0.921↓
Discussion Content
Number of Snippets in Discussion
Snippet Size 0.961
Mean Snippet Size
Number of Words in Discussion 15.098↑
Number of Words per Comment in Discussion 0.082↓
Has Design Keyword 1.153
Has Refactoring Keyword 1.031
Density of Design Comments 0.917
Density of Refactoring Comments 0.978
Organizational Dynamics
Team Size 0.795↓
Number of Male Developers
Number of Female Developers 1.042
Number of Newcomers
Number of Developers Leaving 0.949

Confirmed observations. We observed that the control variables were
collinear to each other, meaning that in a large scale analysis, only one could
be necessary. Concerning the social metrics, we can see that Discussion Length,
Number of Words in Discussion, and Number of Words per Comment in

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 73

Discussion kept their behavior compared to the original work. We think that
this solidifies their place as best social metrics to understand design decay.

Controversial observations. Differently from the original work, the
Communication Dynamics aspect, we see that the Number of Users, Number
of Comments, and Number of Core Developers did not appear as statistical
significant. We think that this needs to be fully addressed in study with a
much larger dataset, since these metrics are having different behaviors in many
different situations. It might be also that many other project-specific factors
end up strongly influencing the results.

New observations. As new results, we found that the Team Size, Time
Between Creation and First Comment, and Time Between Last Comment and
Merge appeared as statistically significant, different from results from RQ2 and
RQ4. We think these are metrics that also need further analysis to understand
what is their real power to relate to design decay symptoms.

Finding 9: Time Between Creation and First Comment, and Time
Between Last Comment and Merge showed promising results on their
relation with design decay symptoms and should be considered in future
work.

4.5
Threats to Validity

Construct and Internal Validity. Our work used the DesignateJava
tool to detect degradation symptoms and characterize changes. Therefore,
while several works [60, 4, 48, 77, 6] have previously used this tool, the types of
symptoms detected by the tool and aspects such as its precision and recall may
introduce some bias to the results of this work. Nevertheless, the symptoms
detected by the tool have been investigated in previous works [48, 60, 61, 6]. A
previous work [62] has also indicated that DesignateJava has a precision of 96%
and a recall of 99%. In order to confirm some of the results of the Designite
Tool, we validated the cases where the design symptoms showed improving
(the design decay symptoms went lower) with self-affirmed refactorings, that
are known for improve the quality of the source code.

This study’s methodology may also not fully represent all possible aspects
that could influence design decay. Besides using social aspects, metrics, and
tools previously studied by previous works, we aimed to mitigate this threat
by increasing the number of projects, adding a new social aspect, making our
statistical analysis stricter, and increasing the number of metrics analysed.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 74

Conclusion and External Validity. In order to mitigate potential
problems with external validity, we performed our analyses carefully and
attentively. In the descriptive analysis, some of our authors contributed to
reviewing and further refining the results. With respect to the statistical
analysis, we did not use a normal distribution due to the skewness of the
data, to avoid mismatch between the statistical method and the dataset. Thus,
we instead used the Wilcoxon Rank Sum Test [80] on RQ1 – which is non-
parametric.

Together with the Cliff’s Delta, we could strict the analysis made on
RQ1. For the regression analysis, we performed additional transformations
(log2 and x3) to reduce the skewness of the metrics. Along with this, we also
removed the predictors with pair-wise correlations above 0.7 – this was done in
order to avoid the multicollinearity of predictors from potentially affecting the
results of the multiple regression model [14]. Furthermore, in order to ensure
normality, we normalized the continuous predictors in the model. Finally, we
also controlled some of the factors that could affect our outcomes through the
usage of control variables, in the regression models (see Section 4.3.2). In this
work, due to previously-mentioned constraints, we limited our investigation of
design symptoms to only systems developed in Java. Due to this, our results
might have bias towards the code structure of Java-based systems – however,
this threat can also be mitigated by the fact that Java is one of the most
popular programming languages, both in the industry and in academia.

4.6
Conclusion and Future Work

This paper reported a replication of a previous work by Barbosa et al [6],
increasing the number of projects, assessing a wide number of metrics in the
social aspects analyzed on previous work, and adding a new social aspects.

When doing this replication, we found several bottlenecks on the data
extraction step. First, the design decay symptoms collection using the Designite
tool [60] needed a high-end server to run. Second, there were many mining
perils [30] that we had to make an avoidance strategies on the scripts. Finally,
the data from the GitHub API took many weeks to be collected, since we are
limited to 5000 calls per hour by the API.

Concerning our study results, we had mixed outcomes. By applying a
rigorous approach on the analysis, when compared to the previous study,
made our results diverge, in different levels, from the original work. On the
first research question, the results went from almost 100% of the metrics
being statistically significant to 4 to 7 metrics in each project, if we did

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 75

not consider the elasticsearch, that maintained his results. However, from our
second research question to fourth, we had results that remained the same,
others that were controversial, and also new observations.

The findings that we reached on this replication paper were: (i) different
social metrics are able to differentiate impactful and unimpactful pull requests
in different projects; (ii) number of users, mean time between comments, and
discussion length proved that they are the best metrics from the communica-
tion dynamics aspects to indicate increase on design decay symptoms; (iii) the
number of core developers need further analysis to really understand its be-
havior; (iv) regarding the discussion content, metrics related to the number of
words in discussion and refactoring keywords are good indicators of increase in
design decay symptom, while the weighted version of these metrics (NWPCD
and Refactoring Keywords Density) showed the opposite effect, being the best
indicators of decrease of the design decay symptoms; finally, (vi) in the organi-
zational dynamics, the new social aspects analysed in this study, we were able
to see that this aspects is related to decrease on the design decay symptoms,
specifically the number of newcomers and number of leaving developers.

Regarding the future work, we can see many approaches that can be
taken from here. First, we need to apply a qualitative study over our findings,
to understand the point of view of the real developers behind these social
metrics. With their opinions, we will be finally able to create real design-aware
social coding guidelines to open-source communities. Then, we want to create
a machine learning model to act as a design decay detector using only social
metrics aspects. By doing that, we want to create a GitHub Bot to react over
social behaviors on issues and pull requests of the projects.

4.7
Summary

This chapter aimed at replicating the study made in Chapter 3. One of
the goals of the replication is to overcome some of the weaknesses that affect
our experimental design (more detail in Chapter 4). We also aim to validate
the results presented here in a larger dataset (5 vs. 7 systems). Finally, we aim
to completely address our second research problem – “There little knowledge
on the influence of communication dynamics, discussion content, and orga-
nizational dynamics on design decay” – by investigating the organizational
dynamics aspect together with the aspects investigated in Chapter 3.

Our results reveal that: (i) different social metrics work as indicators of
design change in different contexts; (ii) Number of Users, Meant Time Between
Comments, and Discussion Length showed their relevance as design decay

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 4. On the Relationship between Social Aspects and Design Decay 76

indicators; (iii) Number of Refactoring Keywords and Refactoring Keyword
Density presented promising results in relation to design decay symptoms; (iv)
the discussion content metrics Number of Words in Discussion and Number
of Words Per Comment in Discussion stood out as the best social metrics
to identify design decay; and, finally, (v) When analyzing multiple social
aspects and multiple projects at the same times, different metrics emerge
as indicators of both increase and decrease of design decay symptoms. In
the next chapter, we revisit the main Master’s dissertation contributions and
present new challenges and opportunities for improvement and future work
that have emerged along the studies conducted in the context of this Master’s
dissertation.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

5
Final Conclusions

Design decay is harmful to software maintenance and evolution. However,
metrics related to source code may often not be enough to indicate it early, as
they can only be obtained once the code change is concluded. Aims to avoid
design decay, we could explore additional information surrounding the software
development activities, such as conversations associated with issues and pull
requests, even before the code change is merged into the main branch. These
conversations enable us to identify or infer many social aspects, which may, in
turn, contributes to indicate an increase or decrease in design decay symptoms.

Since social aspects have different dimensions, it is important to investi-
gate these dimensions individually and as a group. Our goal was to understand
what is the role of each of them and also combining their strengths. So we can
present to social communities on collaborative coding environments insights
and follow-ups in how they should behave to avoid the perils of design decay.

This dissertation aims to reveal the social aspects possibly related to
the design decay in collaborative software communities. First, we analyze
the relationship between two social aspects: communication dynamics and
discussion content over the design decay symptoms in five open-source projects.
In addition, we also evaluate the role of more social measures associated with
the organizational dynamics aspect. In the end, we explored additional social
metrics in the replication study. In summary, the main contributions and their
possible impact on collaborative software communities are described as follows.

Contribution 1: A Software Framework to Collect and Evaluate Social
Metrics. In this work, we designed and implemented 22 social metrics (Chap-
ter 2), based on the mapping study of Wiese et al. [81]. We only implemented
the ones that apply to the scope of a single pull request at the time. To sup-
port these metrics, we also designed and implemented a framework that collects
the data from the GitHub API as a main source to the metrics. Moreover, this
framework and the metrics are implemented with the Python language, and
their implementation can be found in our replication package [7].

Contribution 2: Set of Insights about Social Aspects on Design Decay.
There was little understanding about how social aspects related to design decay
prior to this dissertation. Our goal was to assess these metrics in a preliminary

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 5. Final Conclusions 78

study (see Chapter 3) to investigate if it was possible for social metrics to be
able to indicate design quality changes of the code being produced. Moreover,
in this same study, we investigated the odds ratio of each social metric to
indicate a risk of increase or decrease the design decay symptoms in a pull
request. Finally, we conducted a replication study (see Chapter 4), to validate
and mitigate the limitations of the preliminary study.

Contribution 3: Statistical Models to Evaluate Social Aspects.We assess
the social metrics and design decay by two statistical models, and we also
present these models as contributions for this work. By doing this, we allow
full replication of our work and also permit the study to be assessed in future
work.

Contribution 4: Social Aspects vs Design Decay. Finally, we leave
as contribution our set of empirical findings. They can be used for social
collaboration communities to create their own guidelines.

5.1
Implications and Future Work

This dissertation provides several findings which lead to implications
for researchers, tool developers, and practitioners. Those implications are
discussed as follows.

Social metrics are able to complement current design decay
tools. Our findings say that many social metrics are able to differentiate
between pull requests that changed the design on some level, from the ones that
the design remained the same. Moreover, they also assert that social metrics,
grouped by social aspects, are able to indicate both increase and decrease
of design decay symptoms. These findings reveal that social metrics have a
saying in design quality concerns. There are several tools [60, 73] that try to
indicate whether the design has decayed or not, based on many metrics, e.g.,
code attributes, code smells. However, those tools alone may not be the best
detectors, since our study indicated that social metrics are able to complement
these current strategies. Finally, as our study suggests, those metrics should
be considered when creating a design decay detector tool.

Social Aspects as early detectors. Differently from current tools and
strategies, the social aspects are data that is present since early on the code
development, i.e., first, an issue is created, and then a pull request is submitted
(which contains the source code). In addition, the discussions relating to the
code being developed, even in pull requests, happen before a new committed
is added to the pull request, i.e., developers discuss what they intend to do
before start coding. With that in mind, one can argue that the information

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Chapter 5. Final Conclusions 79

that wraps the social aspects happens prior to the code being made. Thus,
with our findings, tools can be created to predict if a discussion is leading to
an increase in the design decay symptoms or a decreasing of these symptoms.

As future work, we plan to assess the relation of cause and effect
of social aspects and design decay. Moreover, our work also enable one to
build design decay predictors inside this social communities; Our two studies
confirm that different social metrics work as indicators of design change
in different contexts: (i) Number of Users, Meant Time Between Comments,
and Discussion Length showed their relevance as design decay indicators;
(ii) the discussion content metrics Number of Words in Discussion and
Number of Words Per Comment in Discussion stood out as the best social
metrics to identify design decay; (iii) Number of Refactoring Keywords
and Refactoring Keyword Density presented promising results in relation
to design decay symptoms; (iv) The presence of newcomers and the number of
developers leaving the organization showed their importance in the impact on
the design of the system; (v) Gender Diversity did not present any relation
to design decay, which is an interesting finding for gender studies; and (vi)
When analyzing multiple social aspects and multiple projects at the same
times different metrics emerge as indicators of both increase and decrease of
design decay symptoms.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Bibliography

[1] AHMED, I.; MANNAN, U. A.; GOPINATH, R. ; JENSEN, C.. An empiri-
cal study of design degradation: How software projects get worse
over time. In: PROCEEDINGS OF THE 10TH INTERNATIONAL SYMPO-
SIUM ON EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT
(ESEM), p. 1–10. IEEE, 2015.

[2] ALOMAR, E.; MKAOUER, M. W. ; OUNI, A.. Can refactoring be self-
affirmed? an exploratory study on how developers document
their refactoring activities in commit messages. In: PROCEED-
INGS OF THE 3RD INTERNATIONAL WORKSHOP ON REFACTORING
(IWOR), p. 51–58. IEEE, 2019.

[3] ALOMAR, E. A.; MKAOUER, M. W. ; OUNI, A.. Toward the automatic
classification of self-affirmed refactoring. Journal of Systems and
Software, 171:110821, 2021.

[4] ALENEZI, M.; ZAROUR, M.. An empirical study of bad smells
during software evolution using designite tool. i-Manager’s Journal
on Software Engineering, 12(4):12, 2018.

[5] BACCHELLI, A.; BIRD, C.. Expectations, outcomes, and challenges
of modern code review. In: PROCEEDINGS OF THE 35TH INTERNA-
TIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), p. 712–
721. IEEE, 2013.

[6] BARBOSA, C.; UCHÔA, A.; COUTINHO, D.; FALCÃO, F.; BRITO, H.;
AMARAL, G.; SOARES, V.; GARCIA, A.; FONSECA, B.; RIBEIRO, M.
; OTHERS. Revealing the social aspects of design decay: A
retrospective study of pull requests. In: PROCEEDINGS OF THE
34TH BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEERING (SBES),
p. 364–373, 2020.

[7] BARBOSA, C.. Replication package, 2020. Available at: https://
guriosam.github.io/revealing_social_aspects_of_design_decay/.

https://guriosam.github.io/revealing_social_aspects_of_design_decay/
https://guriosam.github.io/revealing_social_aspects_of_design_decay/
DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Bibliography 81

[8] BATISTA, N. A.; BRANDÃO, M. A.; ALVES, G. B.; DA SILVA, A. P. C. ;
MORO, M. M.. Collaboration strength metrics and analyses on
github. In: 16TH WI, p. 170–178, 2017.

[9] BETTENBURG, N.; HASSAN, A. E.. Studying the impact of social
interactions on software quality. Emp. Softw. Eng. (ESE), 18(2):375–
431, 2013.

[10] BIRD, C.; GOURLEY, A.; DEVANBU, P.; SWAMINATHAN, A. ; HSU, G..
Open borders? immigration in open source projects. In: PRO-
CEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON MINING
SOFTWARE REPOSITORIES (MSR), p. 6–6, 2007.

[11] BIRD, C.; NAGAPPAN, N.; MURPHY, B.; GALL, H. ; DEVANBU, P.. Don’t
touch my code! examining the effects of ownership on software
quality. In: PROCEEDINGS OF THE 13TH ACM JOINT EUROPEAN
SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE
FOUNDATIONS OF SOFTWARE ENGINEERING (FSE), p. 4–14, 2011.

[12] BRUNET, J.; MURPHY, G. C.; TERRA, R.; FIGUEIREDO, J. ; SEREY, D..
Do developers discuss design? In: PROCEEDINGS OF THE 11TH IN-
TERNATIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES
(MSR), p. 340–343. ACM, 2014.

[13] DABBISH, L.; STUART, C.; TSAY, J. ; HERBSLEB, J.. Social coding
in github: transparency and collaboration in an open software
repository. In: PROCEEDINGS OF THE 15TH CONFERENCE ON COM-
PUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING
(CSCW), p. 1277–1286, 2012.

[14] DORMANN, C. F.; ELITH, J.; BACHER, S.; BUCHMANN, C.; CARL,
G.; CARRÉ, G.; MARQUÉZ, J. R. G.; GRUBER, B.; LAFOURCADE, B.;
LEITÃO, P. J. ; OTHERS. Collinearity: a review of methods to deal
with it and a simulation study evaluating their performance.
Ecography, 36(1):27–46, 2013.

[15] EDWARDS, A. W.. The measure of association in a 2× 2 table. J.
Royal Stat. Soc., 126(1):109–114, 1963.

[16] EICK, S. G.; GRAVES, T. L.; KARR, A. F.; MARRON, J. S. ; MOCKUS,
A.. Does code decay? assessing the evidence from change man-
agement data. IEEE Transactions on Software Engineering, 27(1):1–12,
2001.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Bibliography 82

[17] EPOSHI, A.; OIZUMI, W.; GARCIA, A.; SOUSA, L.; OLIVEIRA, R. ;
OLIVEIRA, A.. Removal of design problems through refactorings:
are we looking at the right symptoms? In: PROCEEDINGS OF
THE 27TH INTERNATIONAL CONFERENCE ON PROGRAM COMPRE-
HENSION (ICPC), p. 148–153. IEEE Press, 2019.

[18] FALCÃO, F.; BARBOSA, C.; FONSECA, B.; GARCIA, A.; RIBEIRO, M. ;
GHEYI, R.. On relating technical, social factors, and the intro-
duction of bugs. In: PROCEEDINGS OF THE 27TH INTERNATIONAL
CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGI-
NEERING (SANER), p. 378–388, 2020.

[19] FERREIRA, I.; FERNANDES, E.; CEDRIM, D.; UCHÔA, A.; BIBIANO, A. C.;
GARCIA, A.; CORREIA, J. L.; SANTOS, F.; NUNES, G.; BARBOSA, C. ;
OTHERS. The buggy side of code refactoring: Understanding the
relationship between refactorings and bugs. In: PROCEEDINGS OF
THE 40TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEER-
ING: COMPANION PROCEEEDINGS, p. 406–407, 2018.

[20] FOWLER, M.. Refactoring. Addison-Wesley Professional, 1999.

[21] GIUFFRIDA, R.; DITTRICH, Y.. Empirical studies on the use of social
software in global software development–a systematic mapping
study. Information and Software Technology, 55(7):1143–1164, 2013.

[22] GOUSIOS, G.; PINZGER, M. ; DEURSEN, A. V.. An exploratory study
of the pull-based software development model. In: PROCEEDINGS
OF THE 36TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGI-
NEERING (ICSE), p. 345–355, 2014.

[23] GOUSIOS, G.; ZAIDMAN, A.; STOREY, M.-A. ; VAN DEURSEN, A.. Work
practices and challenges in pull-based development: the integra-
tor’s perspective. In: PROCEEDINGS OF THE 37TH INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING (ICSE), volumen 1, p. 358–
368. IEEE, 2015.

[24] GRISSOM, R. J.; KIM, J. J.. Effect sizes for research: A broad
practical approach. Lawrence Erlbaum Associates Publishers, 2005.

[25] GUISAN, A.; ZIMMERMANN, N. E.. Predictive habitat distribution
models in ecology. Ecological modelling, 135(2-3):147–186, 2000.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Bibliography 83

[26] HASSAN, A. E.. Predicting faults using the complexity of code
changes. In: PROCEEDINGS OF THE 31ST INTERNATIONAL CONFER-
ENCE ON SOFTWARE ENGINEERING (ICSE), p. 78–88, 2009.

[27] HOZANO, M.; GARCIA, A.; FONSECA, B. ; COSTA, E.. Are you smelling
it? investigating how similar developers detect code smells. Inf.
Softw. Technol. (IST), 93:130–146, 2018.

[28] IBRAHIM, W. M.; BETTENBURG, N.; SHIHAB, E.; ADAMS, B. ; HASSAN,
A. E.. Should i contribute to this discussion? In: PROCEEDINGS
OF THE 7TH IEEE WORKING CONFERENCE ON MINING SOFTWARE
REPOSITORIES (MSR), p. 181–190. IEEE, 2010.

[29] MAIN, J. B.; SCHIMPF, C.. The underrepresentation of women in
computing fields: A synthesis of literature using a life course
perspective. IEEE Transactions on Education, 60(4):296–304, 2017.

[30] KALLIAMVAKOU, E.; GOUSIOS, G.; BLINCOE, K.; SINGER, L.; GERMAN,
D. M. ; DAMIAN, D.. The promises and perils of mining github.
In: PROCEEDINGS OF THE 11TH WORKING CONFERENCE ON MINING
SOFTWARE REPOSITORIES (MSR), p. 92–101, 2014.

[31] KALLIAMVAKOU, E.; GOUSIOS, G.; BLINCOE, K.; SINGER, L.; GERMAN,
D. M. ; DAMIAN, D.. An in-depth study of the promises and perils
of mining github. Empirical Software Engineering, 21(5):2035–2071, 2016.

[32] KEYES, J.. Social software engineering: development and collab-
oration with social networking. CRC Press, 2016.

[33] KHOMH, F.; DI PENTA, M.; GUÉHÉNEUC, Y.-G. ; ANTONIOL, G.. An
exploratory study of the impact of antipatterns on class change-
and fault-proneness. Emp. Softw. Eng. (ESE), 17(3):243–275, 2012.

[34] KONONENKO, O.; BAYSAL, O. ; GODFREY, M. W.. Code review
quality: how developers see it. In: PROCEEDINGS OF THE 38TH
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE),
p. 1028–1038. IEEE, 2016.

[35] LI, Z.; AVGERIOU, P. ; LIANG, P.. A systematic mapping study on
technical debt and its management. Journal of Systems and Software,
101:193–220, 2015.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Bibliography 84

[36] MANNAN, U. A.; AHMED, I.; ALMURSHED, R. A. M.; DIG, D. ; JENSEN,
C.. Understanding code smells in android applications. In: PRO-
CEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MOBILE
SOFTWARE ENGINEERING AND SYSTEMS (MOBILESOFT), p. 225–236.
IEEE, 2016.

[37] MARTIN, R. C.; MARTIN, M.. Agile Principles, Patterns, and
Practices in C# (Robert C. Martin). Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2006.

[38] MARTINS, J.; BEZERRA, C.; UCHÔA, A. ; GARCIA, A.. Are code
smell co-occurrences harmful to internal quality attributes? a
mixed-method study. In: PROCEEDINGS OF THE 34TH BRAZILIAN
SYMPOSIUM ON SOFTWARE ENGINEERING (SBES), p. 1 – 10, 2020.

[39] MCDONALD, J. H.. Handbook of biological statistics, volumen 2.
Sparky House Publishing, 2009.

[40] MCINTOSH, S.; KAMEI, Y.; ADAMS, B. ; HASSAN, A. E.. An empirical
study of the impact of modern code review practices on software
quality. Emp. Softw. Eng. (ESE), 21(5):2146–2189, 2016.

[41] MELLO, R.; OLIVEIRA, R.; SOUSA, L. ; GARCIA, A.. Towards effective
teams for the identification of code smells. In: PROCEEDINGS
OF THE 10TH INTERNATIONAL WORKSHOP ON COOPERATIVE AND
HUMAN ASPECTS OF SOFTWARE ENGINEERING (CHASE), p. 62–65,
2017.

[42] MENEELY, A.; TEJEDA, A. C. R.; SPATES, B.; TRUDEAU, S.; NEU-
BERGER, D.; WHITLOCK, K.; KETANT, C. ; DAVIS, K.. An empirical
investigation of socio-technical code review metrics and security
vulnerabilities. In: 6TH SSE, p. 37–44, 2014.

[43] MORALES, R.; MCINTOSH, S. ; KHOMH, F.. Do code review prac-
tices impact design quality? a case study of the qt, vtk, and itk
projects. In: PROCEEDINGS OF THE 22ND INTERNATIONAL CONFER-
ENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING
(SANER), p. 171–180. IEEE, 2015.

[44] MUND, S.. Microsoft azure machine learning. Packt Publishing Ltd,
2015.

[45] NAGAPPAN, N.; MURPHY, B. ; BASILI, V.. The influence of organi-
zational structure on software quality. In: PROCEEDINGS OF THE

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Bibliography 85

30TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
(ICSE), p. 521–530. IEEE, 2008.

[46] OIZUMI, W.; GARCIA, A.; SOUSA, L.; CAFEO, B. ; ZHAO, Y.. Code
anomalies flock together: Exploring code anomaly agglomera-
tions for locating design problems. In: PROCEEDINGS OF THE 38TH
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE),
2016.

[47] OIZUMI, W.; SOUSA, L.; OLIVEIRA, A.; GARCIA, A.; AGBACHI, A. B.;
OLIVEIRA, R. ; LUCENA, C.. On the identification of design prob-
lems in stinky code: experiences and tool support. J. Braz. Comput.
Soc., 24(1):13, 2018.

[48] OIZUMI, W.; SOUSA, L.; OLIVEIRA, A.; CARVALHO, L.; GARCIA, A.;
COLANZI, T. ; OLIVEIRA, R.. On the density and diversity of
degradation symptoms in refactored classes: A multi-case study.
In: PROCEEDINGS OF THE 30TH INTERNATIONAL SYMPOSIUM ON
SOFTWARE RELIABILITY ENGINEERING (ISSRE), p. 346–357. IEEE,
2019.

[49] OLIVA, G. A.; STEINMACHER, I.; WIESE, I. ; GEROSA, M. A.. What can
commit metadata tell us about design degradation? In: PROCEED-
INGS OF THE 13TH INTERNATIONAL WORKSHOP ON PRINCIPLES OF
SOFTWARE EVOLUTION (IWPSE), p. 18–27, 2013.

[50] OLIVEIRA, A.; SOUSA, L.; OIZUMI, W. ; GARCIA, A.. On the prior-
itization of design-relevant smelly elements: A mixed-method,
multi-project study. In: PROCEEDINGS OF THE 13TH BRAZILIAN
SYMPOSIUM ON SOFTWARE COMPONENTS, ARCHITECTURES, AND
REUSE (SBCARS), p. 83–92, 2019.

[51] PAIXAO, M.; MAIA, P. H.. Rebasing in code review considered
harmful: A large-scale empirical investigation. In: PROCEEDINGS
OF THE 19TH INTERNATIONAL WORKING CONFERENCE ON SOURCE
CODE ANALYSIS AND MANIPULATION (SCAM), p. 45–55, 2020.

[52] PAIXÃO, M.; UCHÔA, A.; BIBIANO, A. C.; OLIVEIRA, D.; GARCIA, A.;
KRINKE, J. ; ARVONIO, E.. Behind the intents: An in-depth
empirical study on software refactoring in modern code review.
In: PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON
MINING SOFTWARE REPOSITORIES (MSR), 2020.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Bibliography 86

[53] PALOMBA, F.; PANICHELLA, A.; ZAIDMAN, A.; OLIVETO, R. ; DE LUCIA,
A.. The scent of a smell: An extensive comparison between tex-
tual and structural smells. IEEE Trans. Softw. Eng. (TSE), 44(10):977–
1000, 2017.

[54] PALOMBA, F.; BAVOTA, G.; DI PENTA, M.; FASANO, F.; OLIVETO, R.
; DE LUCIA, A.. On the diffuseness and the impact on maintain-
ability of code smells: a large scale empirical investigation. Emp.
Softw. Eng. (ESE), 23(3):1188–1221, 2018.

[55] PARNAS, D. L.. Software aging. In: PROCEEDINGS OF THE 16TH
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE),
p. 279–287. IEEE, 1994.

[56] PASCARELLA, L.; SPADINI, D.; PALOMBA, F. ; BACCHELLI, A.. On
the effect of code review on code smells. In: PROCEEDINGS OF
THE 27TH INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS,
EVOLUTION, AND REENGINEERING (SANER), p. 1–12, 2019.

[57] RAHMAN, M. M.; ROY, C. K.. An insight into the pull requests
of github. In: PROCEEDINGS OF THE 11TH INTERNATIONAL CON-
FERENCE ON MINING SOFTWARE REPOSITORIES (MSR), p. 364–367,
2014.

[58] ROMANO, J.; KROMREY, J. D.; CORAGGIO, J.; SKOWRONEK, J. ;
DEVINE, L.. Exploring methods for evaluating group differences
on the nsse and other surveys: Are the t-test and cohen’sd
indices the most appropriate choices. In: ANNUAL MEETING OF
THE SOUTHERN ASSOCIATION FOR INSTITUTIONAL RESEARCH, p.
1–51. Citeseer, 2006.

[59] RUANGWAN, S.; THONGTANUNAM, P.; IHARA, A. ; MATSUMOTO, K..
The impact of human factors on the participation decision of
reviewers in modern code review. Emp. Softw. Eng. (ESE), 24(2):973–
1016, 2019.

[60] SHARMA, T.; MISHRA, P. ; TIWARI, R.. Designite: A software de-
sign quality assessment tool. In: PROCEEDINGS OF THE 1ST IN-
TERNATIONAL WORKSHOP ON BRINGING ARCHITECTURAL DESIGN
THINKING INTO DEVELOPERS’ DAILY ACTIVITIES, p. 1–4, 2016.

[61] SHARMA, T.; SPINELLIS, D.. A survey on software smells. J. Syst.
Softw. (JSS), 138:158–173, 2018.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Bibliography 87

[62] SHARMA, T.; SINGH, P. ; SPINELLIS, D.. An empirical investigation
on the relationship between design and architecture smells. Emp.
Softw. Eng. (ESE), 2020.

[63] SILVA, M. C. O.; VALENTE, M. T. ; TERRA, R.. Does technical debt
lead to the rejection of pull requests? In: PROCEEDINGS OF THE
12TH BRAZILIAN SYMPOSIUM ON INFORMATION SYSTEMS (SBSI),
2016.

[64] SOARES, V.; OLIVEIRA, A.; PEREIRA, J. A.; BIBANO, A. C.; GARCIA,
A.; FARAH, P. R.; VERGILIO, S. R.; SCHOTS, M.; SILVA, C.; COUTINHO,
D. ; OTHERS. On the relation between complexity, explicitness,
effectiveness of refactorings and non-functional concerns. In:
PROCEEDINGS OF THE 34TH BRAZILIAN SYMPOSIUM ON SOFTWARE
ENGINEERING (SBES), p. 788–797, 2020.

[65] SOUSA, L.; OLIVEIRA, R.; GARCIA, A.; LEE, J.; CONTE, T.; OIZUMI, W.;
DE MELLO, R.; LOPES, A.; VALENTIM, N.; OLIVEIRA, E. ; OTHERS.How
do software developers identify design problems? a qualitative
analysis. In: PROCEEDINGS OF THE 31ST BRAZILIAN SYMPOSIUM
ON SOFTWARE ENGINEERING (SBES), p. 54–63, 2017.

[66] SOUSA, L.; OLIVEIRA, A.; OIZUMI, W.; BARBOSA, S.; GARCIA, A.; LEE,
J.; KALINOWSKI, M.; DE MELLO, R.; FONSECA, B.; OLIVEIRA, R. ;
OTHERS. Identifying design problems in the source code: A
grounded theory. In: PROCEEDINGS OF THE 40TH INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING (ICSE), p. 921–931, 2018.

[67] STEINMACHER, I.; WIESE, I. S.; CONTE, T.; GEROSA, M. A. ; REDMILES,
D.. The hard life of open source software project newcomers.
In: PROCEEDINGS OF THE 7TH INTERNATIONAL WORKSHOP ON
COOPERATIVE AND HUMAN ASPECTS OF SOFTWARE ENGINEERING
(CHASE), p. 72–78, 2014.

[68] STOREY, M.-A.; ZAGALSKY, A.; FIGUEIRA FILHO, F.; SINGER, L. ;
GERMAN, D. M.. How social and communication channels shape
and challenge a participatory culture in software development.
IEEE Transactions on Software Engineering, 43(2):185–204, 2016.

[69] TAMBURRI, D. A.; KRUCHTEN, P.; LAGO, P. ; VAN VLIET, H.. What
is social debt in software engineering? In: PROCEEDINGS OF THE
6TH INTERNATIONAL WORKSHOP ON COOPERATIVE AND HUMAN
ASPECTS OF SOFTWARE ENGINEERING (CHASE), p. 93–96. IEEE, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Bibliography 88

[70] TAMBURRI, D. A.; KRUCHTEN, P.; LAGO, P. ; VAN VLIET, H.. Social
debt in software engineering: insights from industry. Journal of
Internet Services and Applications, 6(1):1–17, 2015.

[71] TANG, A.; ALETI, A.; BURGE, J. ; VAN VLIET, H.. What makes
software design effective? Design Studies, 31(6):614–640, 2010.

[72] TAYLOR, R. N.; VAN DER HOEK, A.. Software design and archi-
tecture the once and future focus of software engineering. In:
FOSE’07, p. 226–243. IEEE, 2007.

[73] TSANTALIS, N.; KETKAR, A. ; DIG, D.. Refactoringminer 2.0. IEEE
Transactions on Software Engineering, 2020.

[74] TSAY, J.; DABBISH, L. ; HERBSLEB, J.. Influence of social and tech-
nical factors for evaluating contribution in github. In: PROCEED-
INGS OF THE 36TH INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING (ICSE), p. 356–366, 2014.

[75] TSAY, J.; DABBISH, L. ; HERBSLEB, J.. Let’s talk about it: evaluating
contributions through discussion in github. In: PROCEEDINGS OF
THE 22ND ACM JOINT EUROPEAN SOFTWARE ENGINEERING CON-
FERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE
ENGINEERING (FSE), p. 144–154, 2014.

[76] UCHÔA, A.; BARBOSA, C.; COUTINHO, D.; OIZUMI, W.; ASSUNÇAO,
W. K.; VERGILIO, S. R.; PEREIRA, J. A.; OLIVEIRA, A. ; GARCIA, A..
Predicting design impactful changes in modern code review: A
large-scale empirical study. In: PROCEEDINGS OF THE 18TH IN-
TERNATIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES
(MSR), p. 1–12, 2021.

[77] UCHÔA, A.; BARBOSA, C.; OIZUMI, W.; BLENILIO, P.; LIMA, R.; GARCIA,
A. ; BEZERRA, C.. How does modern code review impact software
design degradation? an in-depth empirical study. In: PROCEED-
INGS OF THE 36TH INTERNATIONAL CONFERENCE ON SOFTWARE
MAINTENANCE AND EVOLUTION (ICSME), p. 1 – 12, 2020.

[78] VASILESCU, B.; POSNETT, D.; RAY, B.; VAN DEN BRAND, M. G.;
SEREBRENIK, A.; DEVANBU, P. ; FILKOV, V.. Gender and tenure
diversity in github teams. In: PROCEEDINGS OF THE 33RD ANNUAL
ACM CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS,
p. 3789–3798, 2015.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

Bibliography 89

[79] VASILESCU, B.; SEREBRENIK, A. ; FILKOV, V.. A data set for
social diversity studies of github teams. In: PROCEEDINGS OF
THE 12TH INTERNATIONAL CONFERENCE ON MINING SOFTWARE
REPOSITORIES (MSR), p. 514–517, 2015.

[80] WHITLEY, E.; BALL, J.. Statistics review 6: Nonparametric meth-
ods. Critical care, 6(6):509, 2002.

[81] WIESE, I. S.; CÔGO, F. R.; RÉ, R.; STEINMACHER, I. ; GEROSA, M. A..
Social metrics included in prediction models on software engi-
neering: a mapping study. In: PROCEEDINGS OF THE 10TH IN-
TERNATIONAL CONFERENCE ON PREDICTIVE MODELS AND DATA
ANALYTICS IN SOFTWARE ENGINEERING (PROMISE), p. 72–81, 2014.

[82] WOHLIN, C.; RUNESON, P.; HÖST, M.; OHLSSON, M.; REGNELL, B. ;
WESSLÉN, A.. Experimentation in Software Engineering. Springer
Science & Business Media, 1st edition, 2012.

[83] YAMASHITA, A.; ZANONI, M.; FONTANA, F. A. ; WALTER, B.. Inter-
smell relations in industrial and open source systems: A repli-
cation and comparative analysis. In: PROCEEDINGS OF THE 31ST
INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND
EVOLUTION (ICSME), p. 121–130. IEEE, 2015.

[84] YU, Y.; YIN, G.; WANG, H. ; WANG, T.. Exploring the patterns of
social behavior in github. In: PROCEEDINGS OF THE 1ST INTERNA-
TIONAL WORKSHOP ON CROWD-BASED SOFTWARE DEVELOPMENT
METHODS AND TECHNOLOGIES (CROWDSOFT), p. 31–36, 2014.

[85] ZANATY, F. E.; HIRAO, T.; MCINTOSH, S.; IHARA, A. ; MATSUMOTO,
K.. An empirical study of design discussions in code review.
In: PROCEEDINGS OF THE 12TH NTERNATIONAL SYMPOSIUM ON
EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT (ESEM),
p. 11. ACM, 2018.

[86] DE MELLO, R.; UCHÔA, A.; OLIVEIRA, R.; OIZUMI, W.; SOUZA, J.;
MENDES, K.; OLIVEIRA, D.; FONSECA, B. ; GARCIA, A.. Do research
and practice of code smell identification walk together? a social
representations analysis. In: PROCEEDINGS OF THE 13TH INTERNA-
TIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEERING AND
MEASUREMENT (ESEM), p. 1–6, 2019.

DBD
PUC-Rio - Certificação Digital Nº 1912701/CA

	Exploring the Social Aspects of Design Decay
	Resumo
	Table of contents
	Introduction
	Problem Statement and Limitations of Related Work
	Main Research Contributions
	Dissertation Outline

	Background and Related Work
	Pull Request-Based Development Model
	Design Decay and Its Symptoms
	Social Aspects
	Communication Dynamics
	Participation Roles
	Size
	Time

	Discussion Content
	Content Size
	Keyword Related

	Organizational Dynamics

	Summary

	Revealing the Social Aspects of Design Decay
	Introduction
	Background and Related Work
	Pull Request Discussion and Social Aspects
	Design Decay and its Symptoms
	Related Work

	Motivating Example
	Study Settings
	Goal and Research Questions
	Study Steps and Procedures

	Results and Discussion
	Social Metrics and Impactful Pull Requests
	Communication Dynamics and Decay
	Discussion Content and Decay

	Threats to Validity
	Conclusion and Future Work
	Summary

	On the Relationship between Social Aspects and Design Decay
	Introduction
	Background and Related Work
	Study Design
	Goal and Research Questions
	Study Steps and Procedures

	Results and Discussion
	Social Metrics and Impactful Pull Requests
	Communication Dynamics and Decay
	Discussion Content and Decay
	Organizational Dynamics and Decay
	All Metrics and Aspects

	Threats to Validity
	Conclusion and Future Work
	Summary

	Final Conclusions
	Implications and Future Work

	Bibliography

